0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-21 00:52:43 -05:00
immich/machine-learning/src/main.py

74 lines
2.4 KiB
Python
Raw Normal View History

import os
from flask import Flask, request
from transformers import pipeline
from sentence_transformers import SentenceTransformer, util
from PIL import Image
is_dev = os.getenv('NODE_ENV') == 'development'
server_port = os.getenv('MACHINE_LEARNING_PORT', 3003)
server_host = os.getenv('MACHINE_LEARNING_HOST', '0.0.0.0')
classification_model = os.getenv('MACHINE_LEARNING_CLASSIFICATION_MODEL', 'microsoft/resnet-50')
object_model = os.getenv('MACHINE_LEARNING_OBJECT_MODEL', 'hustvl/yolos-tiny')
clip_image_model = os.getenv('MACHINE_LEARNING_CLIP_IMAGE_MODEL', 'clip-ViT-B-32')
clip_text_model = os.getenv('MACHINE_LEARNING_CLIP_TEXT_MODEL', 'clip-ViT-B-32')
_model_cache = {}
def _get_model(model, task=None):
global _model_cache
key = '|'.join([model, str(task)])
if key not in _model_cache:
if task:
_model_cache[key] = pipeline(model=model, task=task)
else:
_model_cache[key] = SentenceTransformer(model)
return _model_cache[key]
server = Flask(__name__)
@server.route("/ping")
def ping():
return "pong"
@server.route("/object-detection/detect-object", methods=['POST'])
def object_detection():
model = _get_model(object_model, 'object-detection')
assetPath = request.json['thumbnailPath']
return run_engine(model, assetPath), 200
@server.route("/image-classifier/tag-image", methods=['POST'])
def image_classification():
model = _get_model(classification_model, 'image-classification')
assetPath = request.json['thumbnailPath']
return run_engine(model, assetPath), 200
@server.route("/sentence-transformer/encode-image", methods=['POST'])
def clip_encode_image():
model = _get_model(clip_image_model)
assetPath = request.json['thumbnailPath']
return model.encode(Image.open(assetPath)).tolist(), 200
@server.route("/sentence-transformer/encode-text", methods=['POST'])
def clip_encode_text():
model = _get_model(clip_text_model)
text = request.json['text']
return model.encode(text).tolist(), 200
def run_engine(engine, path):
result = []
predictions = engine(path)
for index, pred in enumerate(predictions):
tags = pred['label'].split(', ')
if (pred['score'] > 0.9):
result = [*result, *tags]
if (len(result) > 1):
result = list(set(result))
return result
if __name__ == "__main__":
server.run(debug=is_dev, host=server_host, port=server_port)