2023-02-18 09:13:37 -06:00
|
|
|
import os
|
|
|
|
from flask import Flask, request
|
|
|
|
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
server = Flask(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
classifier = pipeline(
|
|
|
|
task="image-classification",
|
|
|
|
model="microsoft/resnet-50"
|
|
|
|
)
|
|
|
|
|
|
|
|
detector = pipeline(
|
|
|
|
task="object-detection",
|
|
|
|
model="hustvl/yolos-tiny"
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# Environment resolver
|
|
|
|
is_dev = os.getenv('NODE_ENV') == 'development'
|
|
|
|
server_port = os.getenv('MACHINE_LEARNING_PORT') or 3003
|
|
|
|
|
|
|
|
|
|
|
|
@server.route("/ping")
|
|
|
|
def ping():
|
|
|
|
return "pong"
|
|
|
|
|
|
|
|
|
|
|
|
@server.route("/object-detection/detect-object", methods=['POST'])
|
|
|
|
def object_detection():
|
|
|
|
assetPath = request.json['thumbnailPath']
|
|
|
|
return run_engine(detector, assetPath), 201
|
|
|
|
|
|
|
|
|
|
|
|
@server.route("/image-classifier/tag-image", methods=['POST'])
|
|
|
|
def image_classification():
|
|
|
|
assetPath = request.json['thumbnailPath']
|
|
|
|
return run_engine(classifier, assetPath), 201
|
|
|
|
|
|
|
|
|
|
|
|
def run_engine(engine, path):
|
|
|
|
result = []
|
|
|
|
predictions = engine(path)
|
|
|
|
|
|
|
|
for index, pred in enumerate(predictions):
|
|
|
|
tags = pred['label'].split(', ')
|
2023-02-26 04:02:35 +00:00
|
|
|
if (pred['score'] > 0.9):
|
|
|
|
result = [*result, *tags]
|
2023-02-18 09:13:37 -06:00
|
|
|
|
|
|
|
if (len(result) > 1):
|
|
|
|
result = list(set(result))
|
|
|
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
server.run(debug=is_dev, host='0.0.0.0', port=server_port)
|