mirror of
https://github.com/penpot/penpot.git
synced 2025-01-27 00:49:28 -05:00
302 lines
7.1 KiB
JavaScript
302 lines
7.1 KiB
JavaScript
/**
|
|
* kdtree
|
|
*
|
|
* Is a modified and google closure adapted kdtree implementation
|
|
* of https://github.com/ubilabs/kd-tree-javascript.
|
|
*
|
|
* @author Andrey Antukh <niwi@niwi.nz>, 2016
|
|
* @author Mircea Pricop <pricop@ubilabs.net>, 2012
|
|
* @author Martin Kleppe <kleppe@ubilabs.net>, 2012
|
|
* @author Ubilabs http://ubilabs.net, 2012
|
|
* @license MIT License <https://opensource.org/licenses/MIT>
|
|
*/
|
|
|
|
goog.provide("kdtree.core");
|
|
goog.provide("kdtree.core.KDTree");
|
|
|
|
goog.require("kdtree.heap");
|
|
goog.require("goog.array");
|
|
goog.require("goog.asserts");
|
|
|
|
goog.scope(function() {
|
|
"use strict";
|
|
|
|
const assert = goog.asserts.assert;
|
|
const assertNumber = goog.asserts.assertNumber;
|
|
const every = goog.array.every;
|
|
|
|
class Node {
|
|
constructor(obj, dimension, parent) {
|
|
this.obj = obj;
|
|
this.left = null;
|
|
this.right = null;
|
|
this.parent = parent;
|
|
this.dimension = dimension;
|
|
}
|
|
}
|
|
|
|
function precision(v) {
|
|
return parseFloat(v.toFixed(6));
|
|
}
|
|
|
|
function buildTree(points, depth, parent, dimensions) {
|
|
const dim = depth % dimensions;
|
|
|
|
if (points.length === 0) {
|
|
return null;
|
|
}
|
|
|
|
if (points.length === 1) {
|
|
return new Node(points[0], dim, parent);
|
|
}
|
|
|
|
points.sort((a, b) => {
|
|
return a[dim] - b[dim];
|
|
});
|
|
|
|
const median = Math.floor(points.length / 2);
|
|
const node = new Node(points[median], dim, parent);
|
|
node.left = buildTree(points.slice(0, median), depth + 1, node, dimensions);
|
|
node.right = buildTree(points.slice(median + 1), depth + 1, node, dimensions);
|
|
|
|
return node;
|
|
}
|
|
|
|
function findMin(node, dim) {
|
|
let dimension, own, left, right, min;
|
|
|
|
if (node === null) {
|
|
return null;
|
|
}
|
|
|
|
if (node.dimension === dim) {
|
|
if (node.left !== null) {
|
|
return findMin(node.left, dim);
|
|
}
|
|
return node;
|
|
}
|
|
|
|
own = node.obj[dim];
|
|
left = findMin(node.left, dim);
|
|
right = findMin(node.right, dim);
|
|
min = node;
|
|
|
|
if (left !== null && left.obj[dim] < own) {
|
|
min = left;
|
|
}
|
|
if (right !== null && right.obj[dim] < min.obj[dim]) {
|
|
min = right;
|
|
}
|
|
return min;
|
|
}
|
|
|
|
function innerSearch(point, node, parent) {
|
|
if (node === null) {
|
|
return parent;
|
|
}
|
|
|
|
if (point[dim] < node.obj[dim]) {
|
|
return innerSearch(point, node.left, node);
|
|
} else {
|
|
return innerSearch(point, node.right, node);
|
|
}
|
|
}
|
|
|
|
function nodeSearch(point, node) {
|
|
if (node === null) {
|
|
return null;
|
|
}
|
|
|
|
if (node.obj === point) {
|
|
return node;
|
|
}
|
|
|
|
if (point[node.dimension] < node.obj[node.dimension]) {
|
|
return nodeSearch(point, node.left);
|
|
} else {
|
|
return nodeSearch(point, node.right);
|
|
}
|
|
}
|
|
|
|
class KDTree {
|
|
constructor(points, metric, dimensions) {
|
|
assert(points.length !== 0);
|
|
assertNumber(dimensions);
|
|
|
|
this.root = buildTree(points, 0, null, dimensions);
|
|
this.metric = metric;
|
|
this.dimensions = dimensions;
|
|
}
|
|
|
|
insert(point) {
|
|
const insertPosition = innerSearch(point, this.root, null);
|
|
|
|
if (insertPosition === null) {
|
|
this.root = new Node(point, 0, null);
|
|
return;
|
|
}
|
|
|
|
const newNode = new Node(point,
|
|
(insertPosition.dimension + 1) % this.dimensions,
|
|
insertPosition);
|
|
|
|
const dimension = insertPosition.dimension;
|
|
if (point[dimension] < insertPosition.obj[dimension]) {
|
|
insertPosition.left = newNode;
|
|
} else {
|
|
insertPosition.right = newNode;
|
|
}
|
|
}
|
|
|
|
remove(point) {
|
|
const node = nodeSearch(point, this.root);
|
|
if (node === null) {
|
|
return;
|
|
}
|
|
|
|
if (node.left === null && node.right === null) {
|
|
if (node.parent === null) {
|
|
this.root = null;
|
|
return;
|
|
}
|
|
|
|
const pdim = node.parent.dimension;
|
|
|
|
if (node.obj[pdim] < node.parent.obj[pdim]) {
|
|
node.parent.left = null;
|
|
} else {
|
|
node.parent.right = null;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If the right subtree is not empty, swap with the minimum element on the
|
|
// node's dimension. If it is empty, we swap the left and right subtrees and
|
|
// do the same.
|
|
let nextNode, nextObj;
|
|
|
|
if (node.right !== null) {
|
|
nextNode = findMin(node.right, node.dimension);
|
|
nextObj = nextNode.obj;
|
|
removeNode(nextNode);
|
|
node.obj = nextObj;
|
|
} else {
|
|
nextNode = findMin(node.left, node.dimension);
|
|
nextObj = nextNode.obj;
|
|
removeNode(nextNode);
|
|
node.right = node.left;
|
|
node.left = null;
|
|
node.obj = nextObj;
|
|
}
|
|
}
|
|
|
|
nearest(point, maxNodes) {
|
|
if (maxNodes === undefined) {
|
|
maxNodes = 1;
|
|
}
|
|
|
|
let best = new kdtree.heap.MinHeap((x, y) => {
|
|
let res = x[1] - y[1];
|
|
return res;
|
|
});
|
|
|
|
const nearestSearch = (node) => {
|
|
let distance = precision(this.metric(point, node.obj));
|
|
|
|
if (best.isEmpty()) {
|
|
best.insert([node.obj, distance]);
|
|
} else {
|
|
if (distance < best.peek()[1]) {
|
|
best.insert([node.obj, distance]);
|
|
}
|
|
}
|
|
|
|
if (node.right === null && node.left === null) {
|
|
return;
|
|
}
|
|
|
|
let bestChild = null;
|
|
if (node.right === null) {
|
|
bestChild = node.left;
|
|
} else if (node.left === null) {
|
|
bestChild = node.right;
|
|
} else {
|
|
if (point[node.dimension] < node.obj[node.dimension]) {
|
|
bestChild = node.left;
|
|
} else {
|
|
bestChild = node.right;
|
|
}
|
|
}
|
|
|
|
nearestSearch(bestChild);
|
|
|
|
let candidate = [null, null];
|
|
for (let i = 0; i < this.dimensions; i += 1) {
|
|
if (i === node.dimension) {
|
|
candidate[i] = point[i];
|
|
} else {
|
|
candidate[i] = node.obj[i];
|
|
}
|
|
}
|
|
|
|
distance = Math.abs(this.metric(candidate, node.obj));
|
|
|
|
if (best.size < maxNodes || distance < best.peek()[1]) {
|
|
let otherChild;
|
|
if (bestChild === node.left) {
|
|
otherChild = node.right;
|
|
} else {
|
|
otherChild = node.left;
|
|
}
|
|
if (otherChild !== null) {
|
|
nearestSearch(otherChild);
|
|
}
|
|
}
|
|
}
|
|
|
|
if(this.root) {
|
|
nearestSearch(this.root);
|
|
}
|
|
|
|
const result = [];
|
|
|
|
for (let i=0; i < (Math.min(maxNodes, best.size)); i++) {
|
|
result.push(best.removeHead());
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
balanceFactor() {
|
|
function height(node) {
|
|
if (node === null) {
|
|
return 0;
|
|
}
|
|
return Math.max(height(node.left), height(node.right)) + 1;
|
|
}
|
|
|
|
function count(node) {
|
|
if (node === null) {
|
|
return 0;
|
|
}
|
|
return count(node.left) + count(node.right) + 1;
|
|
}
|
|
|
|
return height(this.root) / (Math.log(count(this.root)) / Math.log(2));
|
|
}
|
|
}
|
|
|
|
function distance2d(a, b){
|
|
return Math.sqrt(Math.pow(a[0] - b[0], 2) + Math.pow(a[1] - b[1], 2));
|
|
}
|
|
|
|
function create2d(points) {
|
|
return new KDTree(points, distance2d, 2);
|
|
};
|
|
|
|
// Types
|
|
kdtree.core.KDTree = KDTree;
|
|
|
|
// Factory functions
|
|
kdtree.core.create2d = create2d;
|
|
});
|