0
Fork 0
mirror of https://github.com/penpot/penpot.git synced 2025-01-09 00:10:11 -05:00

Add kdtree implementation.

This commit is contained in:
Andrey Antukh 2016-04-07 22:44:14 +03:00
parent 09f75ae3fd
commit 5ae1c6a78c
No known key found for this signature in database
GPG key ID: 4DFEBCB8316A8B95

474
vendor/kdtree.js vendored Normal file
View file

@ -0,0 +1,474 @@
/**
* kdtree
*
* Is a modified and google closure adapted kdtree implementation
* of https://github.com/ubilabs/kd-tree-javascript.
*
* @author Andrey Antukh <niwi@niwi.nz>, 2016
* @author Mircea Pricop <pricop@ubilabs.net>, 2012
* @author Martin Kleppe <kleppe@ubilabs.net>, 2012
* @author Ubilabs http://ubilabs.net, 2012
* @license MIT License <http://www.opensource.org/licenses/mit-license.php>
*/
goog.provide("kdtree");
goog.provide("kdtree.Point2d");
goog.provide("kdtree.KDTree");
goog.require('goog.array');
goog.require('goog.asserts');
goog.scope(function() {
"use strict";
const assert = goog.asserts.assert;
const assertNumber = goog.asserts.assertNumber;
const every = goog.array.every;
class Point2d {
constructor(x, y, data) {
this.type = Point2d;
this.x = x;
this.y = y;
this.data = data;
}
static empty() {
return new Point2d(0, 0, null);
}
get(index) {
if (index === 0) {
return this.x;
} else {
return this.y;
}
}
set(index, value) {
if (index === 0) {
this.x = value;
} else {
this.y = value;
}
return this;
}
}
class Node {
constructor(obj, dimension, parent) {
this.obj = obj;
this.left = null;
this.right = null;
this.parent = parent;
this.dimension = dimension;
}
}
function buildTree(points, depth, parent, dimensions) {
const dim = depth % dimensions;
if (points.length === 0) {
return null;
}
if (points.length === 1) {
return new Node(points[0], dim, parent);
}
points.sort((a, b) => {
return a.get(dim) - b.get(dim);
});
const median = Math.floor(points.length / 2);
const node = new Node(points[median], dim, parent);
node.left = buildTree(points.slice(0, median), depth + 1, node, dimensions);
node.right = buildTree(points.slice(median + 1), depth + 1, node, dimensions);
return node;
}
function findMin(node, dim) {
let dimension, own, left, right, min;
if (node === null) {
return null;
}
if (node.dimension === dim) {
if (node.left !== null) {
return findMin(node.left, dim);
}
return node;
}
own = node.obj.get(dim);
left = findMin(node.left, dim);
right = findMin(node.right, dim);
min = node;
if (left !== null && left.obj.get(dim) < own) {
min = left;
}
if (right !== null && right.obj.get(dim) < min.obj.get(dim)) {
min = right;
}
return min;
}
function innerSearch(point, node, parent) {
if (node === null) {
return parent;
}
if (point.get(dim) < node.obj.get(dim)) {
return innerSearch(point, node.left, node);
} else {
return innerSearch(point, node.right, node);
}
}
function nodeSearch(point, node) {
if (node === null) {
return null;
}
if (node.obj === point) {
return node;
}
if (point.get(node.dimension) < node.obj.get(node.dimension)) {
return nodeSearch(point, node.left);
} else {
return nodeSearch(point, node.right);
}
}
class KDTree {
constructor(points, metric, dimensions) {
assert(points.length !== 0);
assertNumber(dimensions);
this.root = buildTree(points, 0, null, dimensions);
this.metric = metric;
this.dimensions = dimensions;
}
insert(point) {
const insertPosition = innerSearch(point, this.root, null);
if (insertPosition === null) {
this.root = new Node(point, 0, null);
return;
}
const newNode = new Node(point,
(insertPosition.dimension + 1) % this.dimensions,
insertPosition);
const dimension = insertPosition.dimension;
if (point.get(dimension) < insertPosition.obj.get(dimension)) {
insertPosition.left = newNode;
} else {
insertPosition.right = newNode;
}
}
remove(point) {
const node = nodeSearch(point, this.root);
if (node === null) {
return;
}
if (node.left === null && node.right === null) {
if (node.parent === null) {
this.root = null;
return;
}
const pdim = node.parent.dimension;
if (node.obj.get(pdim) < node.parent.obj.get(pdim)) {
node.parent.left = null;
} else {
node.parent.right = null;
}
return;
}
// If the right subtree is not empty, swap with the minimum element on the
// node's dimension. If it is empty, we swap the left and right subtrees and
// do the same.
let nextNode, nextObj;
if (node.right !== null) {
nextNode = findMin(node.right, node.dimension);
nextObj = nextNode.obj;
removeNode(nextNode);
node.obj = nextObj;
} else {
nextNode = findMin(node.left, node.dimension);
nextObj = nextNode.obj;
removeNode(nextNode);
node.right = node.left;
node.left = null;
node.obj = nextObj;
}
}
nearest(point, maxNodes, maxDistance) {
let i, result, bestNodes;
if (maxNodes === undefined) {
maxNodes = 1;
}
bestNodes = new BinaryHeap(function (e) { return -e[1]; });
const nearestSearch = (node) => {
const ownDistance = self.metric(point, node.obj);
const dimension = node.dimension;
const pointType = node.obj.type;
const linearPoint = pointType.empty();
let otherChild, linearDistance, bestChild, i;
function saveNode(node, distance) {
bestNodes.push([node, distance]);
if (bestNodes.size() > maxNodes) {
bestNodes.pop();
}
}
for (i = 0; i < this.dimensions; i += 1) {
if (i === node.dimension) {
linearPoint.set(i, point.get(i));
} else {
linearPoint.set(i, node.obj.get(i));
}
}
linearDistance = this.metric(linearPoint, node.obj);
if (node.right === null && node.left === null) {
if (bestNodes.size() < maxNodes || ownDistance < bestNodes.peek()[1]) {
saveNode(node, ownDistance);
}
return;
}
if (node.right === null) {
bestChild = node.left;
} else if (node.left === null) {
bestChild = node.right;
} else {
if (point.get(dimension) < node.obj.get(dimension)) {
bestChild = node.left;
} else {
bestChild = node.right;
}
}
nearestSearch(bestChild);
if (bestNodes.size() < maxNodes || ownDistance < bestNodes.peek()[1]) {
saveNode(node, ownDistance);
}
if (bestNodes.size() < maxNodes || Math.abs(linearDistance) < bestNodes.peek()[1]) {
if (bestChild === node.left) {
otherChild = node.right;
} else {
otherChild = node.left;
}
if (otherChild !== null) {
nearestSearch(otherChild);
}
}
}
if (maxDistance) {
for (i = 0; i < maxNodes; i += 1) {
bestNodes.push([null, maxDistance]);
}
}
if(this.root) {
nearestSearch(this.root);
}
result = [];
for (i = 0; i < Math.min(maxNodes, bestNodes.content.length); i += 1) {
if (bestNodes.content[i][0]) {
result.push([bestNodes.content[i][0].obj, bestNodes.content[i][1]]);
}
}
return result;
}
balanceFactor() {
function height(node) {
if (node === null) {
return 0;
}
return Math.max(height(node.left), height(node.right)) + 1;
}
function count(node) {
if (node === null) {
return 0;
}
return count(node.left) + count(node.right) + 1;
}
return height(this.root) / (Math.log(count(this.root)) / Math.log(2));
}
}
// Binary heap implementation from:
// http://eloquentjavascript.net/appendix2.html
function BinaryHeap(scoreFunction){
this.content = [];
this.scoreFunction = scoreFunction;
}
BinaryHeap.prototype = {
push: function(element) {
// Add the new element to the end of the array.
this.content.push(element);
// Allow it to bubble up.
this.bubbleUp(this.content.length - 1);
},
pop: function() {
// Store the first element so we can return it later.
var result = this.content[0];
// Get the element at the end of the array.
var end = this.content.pop();
// If there are any elements left, put the end element at the
// start, and let it sink down.
if (this.content.length > 0) {
this.content[0] = end;
this.sinkDown(0);
}
return result;
},
peek: function() {
return this.content[0];
},
remove: function(node) {
var len = this.content.length;
// To remove a value, we must search through the array to find
// it.
for (var i = 0; i < len; i++) {
if (this.content[i] == node) {
// When it is found, the process seen in 'pop' is repeated
// to fill up the hole.
var end = this.content.pop();
if (i != len - 1) {
this.content[i] = end;
if (this.scoreFunction(end) < this.scoreFunction(node))
this.bubbleUp(i);
else
this.sinkDown(i);
}
return;
}
}
throw new Error("Node not found.");
},
size: function() {
return this.content.length;
},
bubbleUp: function(n) {
// Fetch the element that has to be moved.
var element = this.content[n];
// When at 0, an element can not go up any further.
while (n > 0) {
// Compute the parent element's index, and fetch it.
var parentN = Math.floor((n + 1) / 2) - 1,
parent = this.content[parentN];
// Swap the elements if the parent is greater.
if (this.scoreFunction(element) < this.scoreFunction(parent)) {
this.content[parentN] = element;
this.content[n] = parent;
// Update 'n' to continue at the new position.
n = parentN;
}
// Found a parent that is less, no need to move it further.
else {
break;
}
}
},
sinkDown: function(n) {
// Look up the target element and its score.
var length = this.content.length,
element = this.content[n],
elemScore = this.scoreFunction(element);
while(true) {
// Compute the indices of the child elements.
var child2N = (n + 1) * 2, child1N = child2N - 1;
// This is used to store the new position of the element,
// if any.
var swap = null;
// If the first child exists (is inside the array)...
if (child1N < length) {
// Look it up and compute its score.
var child1 = this.content[child1N],
child1Score = this.scoreFunction(child1);
// If the score is less than our element's, we need to swap.
if (child1Score < elemScore)
swap = child1N;
}
// Do the same checks for the other child.
if (child2N < length) {
var child2 = this.content[child2N],
child2Score = this.scoreFunction(child2);
if (child2Score < (swap == null ? elemScore : child1Score)){
swap = child2N;
}
}
// If the element needs to be moved, swap it, and continue.
if (swap != null) {
this.content[n] = this.content[swap];
this.content[swap] = element;
n = swap;
}
// Otherwise, we are done.
else {
break;
}
}
}
};
function distance2d(a, b){
return Math.pow(a.x - b.x, 2) + Math.pow(a.y - b.y, 2);
}
function point2d(x, y, data) {
return new Point2d(x, y, data);
}
function create2d(points) {
return new KDTree(points, distance2d, 2);
};
// Types
kdtree.KDTree = KDTree;
// Factory functions
kdtree.point2d = point2d;
kdtree.create2d = create2d;
});