0
Fork 0
mirror of https://github.com/penpot/penpot.git synced 2025-01-25 07:58:49 -05:00

Simplify kdtree impl removing unused code.

This commit is contained in:
Andrey Antukh 2016-06-11 15:09:37 +03:00
parent ed6417f6db
commit 2fbd3f6007
No known key found for this signature in database
GPG key ID: 4DFEBCB8316A8B95

300
vendor/kdtree/core.js vendored
View file

@ -11,6 +11,8 @@
* @license MIT License <https://opensource.org/licenses/MIT>
*/
"use strict";
goog.provide("kdtree.core");
goog.provide("kdtree.core.KDTree");
@ -18,10 +20,10 @@ goog.require("kdtree.heap");
goog.require("goog.asserts");
goog.scope(function() {
"use strict";
const assert = goog.asserts.assert;
const assertNumber = goog.asserts.assertNumber;
// Hardcoded dimensions value;
const dimensions = 2;
class Node {
constructor(obj, dimension, parent) {
@ -33,11 +35,43 @@ goog.scope(function() {
}
}
class KDTree {
constructor() {
this.root = null;
}
initialize(points) {
assert(goog.isArray(points));
this.root = buildTree(null, points, 0);
}
isInitialized() {
return this.root !== null;
}
clear() {
this.root = null
}
nearest(point, maxNodes) {
assert(goog.isArray(point));
assert(maxNodes >= 1);
assert(this.isInitialized())
return searchNearest(this.root, point, maxNodes);
}
}
// --- Private Api (implementation)
function precision(v) {
return parseFloat(v.toFixed(6));
}
function buildTree(points, depth, parent, dimensions) {
function calculateDistance(a, b){
return Math.sqrt(Math.pow(a[0] - b[0], 2) + Math.pow(a[1] - b[1], 2));
}
function buildTree(parent, points, depth) {
const dim = depth % dimensions;
if (points.length === 0) {
@ -54,229 +88,97 @@ goog.scope(function() {
const median = Math.floor(points.length / 2);
const node = new Node(points[median], dim, parent);
node.left = buildTree(points.slice(0, median), depth + 1, node, dimensions);
node.right = buildTree(points.slice(median + 1), depth + 1, node, dimensions);
node.left = buildTree(node, points.slice(0, median), depth + 1);
node.right = buildTree(node, points.slice(median + 1), depth + 1);
return node;
}
function findMin(node, dim) {
let dimension, own, left, right, min;
if (node === null) {
return null;
}
if (node.dimension === dim) {
if (node.left !== null) {
return findMin(node.left, dim);
}
return node;
}
own = node.obj[dim];
left = findMin(node.left, dim);
right = findMin(node.right, dim);
min = node;
if (left !== null && left.obj[dim] < own) {
min = left;
}
if (right !== null && right.obj[dim] < min.obj[dim]) {
min = right;
}
return min;
}
function innerSearch(point, node, parent) {
if (node === null) {
return parent;
}
if (point[dim] < node.obj[dim]) {
return innerSearch(point, node.left, node);
} else {
return innerSearch(point, node.right, node);
}
}
function nodeSearch(point, node) {
if (node === null) {
return null;
}
if (node.obj === point) {
return node;
}
if (point[node.dimension] < node.obj[node.dimension]) {
return nodeSearch(point, node.left);
} else {
return nodeSearch(point, node.right);
}
}
class KDTree {
constructor(points, metric, dimensions) {
assert(points.length !== 0);
assertNumber(dimensions);
this.root = buildTree(points, 0, null, dimensions);
this.metric = metric;
this.dimensions = dimensions;
}
insert(point) {
const insertPosition = innerSearch(point, this.root, null);
if (insertPosition === null) {
this.root = new Node(point, 0, null);
return;
function searchNearest(root, point, maxNodes) {
const search = (best, node) => {
if (best === null) {
best = new kdtree.heap.MinHeap((x, y) => x[1] - y[1]);
}
const newNode = new Node(point,
(insertPosition.dimension + 1) % this.dimensions,
insertPosition);
let distance = precision(calculateDistance(point, node.obj));
const dimension = insertPosition.dimension;
if (point[dimension] < insertPosition.obj[dimension]) {
insertPosition.left = newNode;
if (best.isEmpty()) {
best.insert([node.obj, distance]);
} else {
insertPosition.right = newNode;
}
}
remove(point) {
const node = nodeSearch(point, this.root);
if (node === null) {
return;
}
if (node.left === null && node.right === null) {
if (node.parent === null) {
this.root = null;
return;
}
const pdim = node.parent.dimension;
if (node.obj[pdim] < node.parent.obj[pdim]) {
node.parent.left = null;
} else {
node.parent.right = null;
}
return;
}
// If the right subtree is not empty, swap with the minimum element on the
// node's dimension. If it is empty, we swap the left and right subtrees and
// do the same.
let nextNode, nextObj;
if (node.right !== null) {
nextNode = findMin(node.right, node.dimension);
nextObj = nextNode.obj;
removeNode(nextNode);
node.obj = nextObj;
} else {
nextNode = findMin(node.left, node.dimension);
nextObj = nextNode.obj;
removeNode(nextNode);
node.right = node.left;
node.left = null;
node.obj = nextObj;
}
}
nearest(point, maxNodes) {
if (maxNodes === undefined) {
maxNodes = 1;
}
let best = new kdtree.heap.MinHeap((x, y) => {
let res = x[1] - y[1];
return res;
});
const nearestSearch = (node) => {
let distance = precision(this.metric(point, node.obj));
if (best.isEmpty()) {
if (distance < best.peek()[1]) {
best.insert([node.obj, distance]);
} else {
if (distance < best.peek()[1]) {
best.insert([node.obj, distance]);
}
}
}
if (node.right === null && node.left === null) {
return;
}
if (node.right === null && node.left === null) {
return best;
}
let bestChild = null;
if (node.right === null) {
let bestChild = null;
if (node.right === null) {
bestChild = node.left;
} else if (node.left === null) {
bestChild = node.right;
} else {
if (point[node.dimension] < node.obj[node.dimension]) {
bestChild = node.left;
} else if (node.left === null) {
bestChild = node.right;
} else {
if (point[node.dimension] < node.obj[node.dimension]) {
bestChild = node.left;
} else {
bestChild = node.right;
}
bestChild = node.right;
}
nearestSearch(bestChild);
let candidate = [null, null];
for (let i = 0; i < this.dimensions; i += 1) {
if (i === node.dimension) {
candidate[i] = point[i];
} else {
candidate[i] = node.obj[i];
}
}
distance = Math.abs(this.metric(candidate, node.obj));
if (best.size < maxNodes || distance < best.peek()[1]) {
let otherChild;
if (bestChild === node.left) {
otherChild = node.right;
} else {
otherChild = node.left;
}
if (otherChild !== null) {
nearestSearch(otherChild);
}
}
};
if(this.root) {
nearestSearch(this.root);
}
const result = [];
best = search(best, bestChild);
for (let i=0; i < (Math.min(maxNodes, best.size)); i++) {
result.push(best.removeHead());
let candidate = [null, null];
for (let i = 0; i < dimensions; i += 1) {
if (i === node.dimension) {
candidate[i] = point[i];
} else {
candidate[i] = node.obj[i];
}
}
return result;
distance = Math.abs(calculateDistance(candidate, node.obj));
if (best.size < maxNodes || distance < best.peek()[1]) {
let otherChild;
if (bestChild === node.left) {
otherChild = node.right;
} else {
otherChild = node.left;
}
if (otherChild !== null) {
best = search(best, otherChild);
}
}
return best;
};
const best = search(null, root);
const result = [];
for (let i=0; i < (Math.min(maxNodes, best.size)); i++) {
result.push(best.removeHead());
}
return result;
}
function distance2d(a, b){
return Math.sqrt(Math.pow(a[0] - b[0], 2) + Math.pow(a[1] - b[1], 2));
}
// --- Public Api
function create2d(points) {
return new KDTree(points, distance2d, 2);
function create(points) {
const tree = new KDTree();
if (goog.isArray(points)) {
tree.initialize(points);
}
return tree;
};
// Types
kdtree.core.KDTree = KDTree;
// Factory functions
kdtree.core.create2d = create2d;
kdtree.core.create = create;
});