mirror of
https://github.com/immich-app/immich.git
synced 2025-01-21 00:52:43 -05:00
2b1b43a7e4
* modularize model classes * various fixes * expose port * change response * round coordinates * simplify preload * update server * simplify interface simplify * update tests * composable endpoint * cleanup fixes remove unnecessary interface support text input, cleanup * ew camelcase * update server server fixes fix typing * ml fixes update locustfile fixes * cleaner response * better repo response * update tests formatting and typing rename * undo compose change * linting fix type actually fix typing * stricter typing fix detection-only response no need for defaultdict * update spec file update api linting * update e2e * unnecessary dimension * remove commented code * remove duplicate code * remove unused imports * add batch dim
62 lines
2.1 KiB
Python
62 lines
2.1 KiB
Python
from io import BytesIO
|
|
from typing import IO
|
|
|
|
import cv2
|
|
import numpy as np
|
|
from numpy.typing import NDArray
|
|
from PIL import Image
|
|
|
|
_PIL_RESAMPLING_METHODS = {resampling.name.lower(): resampling for resampling in Image.Resampling}
|
|
|
|
|
|
def resize_pil(img: Image.Image, size: int) -> Image.Image:
|
|
if img.width < img.height:
|
|
return img.resize((size, int((img.height / img.width) * size)), resample=Image.Resampling.BICUBIC)
|
|
else:
|
|
return img.resize((int((img.width / img.height) * size), size), resample=Image.Resampling.BICUBIC)
|
|
|
|
|
|
# https://stackoverflow.com/a/60883103
|
|
def crop_pil(img: Image.Image, size: int) -> Image.Image:
|
|
left = int((img.size[0] / 2) - (size / 2))
|
|
upper = int((img.size[1] / 2) - (size / 2))
|
|
right = left + size
|
|
lower = upper + size
|
|
|
|
return img.crop((left, upper, right, lower))
|
|
|
|
|
|
def to_numpy(img: Image.Image) -> NDArray[np.float32]:
|
|
return np.asarray(img if img.mode == "RGB" else img.convert("RGB"), dtype=np.float32) / 255.0
|
|
|
|
|
|
def normalize(
|
|
img: NDArray[np.float32], mean: float | NDArray[np.float32], std: float | NDArray[np.float32]
|
|
) -> NDArray[np.float32]:
|
|
return np.divide(img - mean, std, dtype=np.float32)
|
|
|
|
|
|
def get_pil_resampling(resample: str) -> Image.Resampling:
|
|
return _PIL_RESAMPLING_METHODS[resample.lower()]
|
|
|
|
|
|
def pil_to_cv2(image: Image.Image) -> NDArray[np.uint8]:
|
|
return cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) # type: ignore
|
|
|
|
|
|
def decode_pil(image_bytes: bytes | IO[bytes] | Image.Image) -> Image.Image:
|
|
if isinstance(image_bytes, Image.Image):
|
|
return image_bytes
|
|
image = Image.open(BytesIO(image_bytes) if isinstance(image_bytes, bytes) else image_bytes)
|
|
image.load() # type: ignore
|
|
if not image.mode == "RGB":
|
|
image = image.convert("RGB")
|
|
return image
|
|
|
|
|
|
def decode_cv2(image_bytes: NDArray[np.uint8] | bytes | Image.Image) -> NDArray[np.uint8]:
|
|
if isinstance(image_bytes, bytes):
|
|
image_bytes = decode_pil(image_bytes) # pillow is much faster than cv2
|
|
if isinstance(image_bytes, Image.Image):
|
|
return pil_to_cv2(image_bytes)
|
|
return image_bytes
|