0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-21 00:52:43 -05:00
immich/machine-learning/app/models/transforms.py
Mert 2b1b43a7e4
feat(ml): composable ml (#9973)
* modularize model classes

* various fixes

* expose port

* change response

* round coordinates

* simplify preload

* update server

* simplify interface

simplify

* update tests

* composable endpoint

* cleanup

fixes

remove unnecessary interface

support text input, cleanup

* ew camelcase

* update server

server fixes

fix typing

* ml fixes

update locustfile

fixes

* cleaner response

* better repo response

* update tests

formatting and typing

rename

* undo compose change

* linting

fix type

actually fix typing

* stricter typing

fix detection-only response

no need for defaultdict

* update spec file

update api

linting

* update e2e

* unnecessary dimension

* remove commented code

* remove duplicate code

* remove unused imports

* add batch dim
2024-06-07 03:09:47 +00:00

62 lines
2.1 KiB
Python

from io import BytesIO
from typing import IO
import cv2
import numpy as np
from numpy.typing import NDArray
from PIL import Image
_PIL_RESAMPLING_METHODS = {resampling.name.lower(): resampling for resampling in Image.Resampling}
def resize_pil(img: Image.Image, size: int) -> Image.Image:
if img.width < img.height:
return img.resize((size, int((img.height / img.width) * size)), resample=Image.Resampling.BICUBIC)
else:
return img.resize((int((img.width / img.height) * size), size), resample=Image.Resampling.BICUBIC)
# https://stackoverflow.com/a/60883103
def crop_pil(img: Image.Image, size: int) -> Image.Image:
left = int((img.size[0] / 2) - (size / 2))
upper = int((img.size[1] / 2) - (size / 2))
right = left + size
lower = upper + size
return img.crop((left, upper, right, lower))
def to_numpy(img: Image.Image) -> NDArray[np.float32]:
return np.asarray(img if img.mode == "RGB" else img.convert("RGB"), dtype=np.float32) / 255.0
def normalize(
img: NDArray[np.float32], mean: float | NDArray[np.float32], std: float | NDArray[np.float32]
) -> NDArray[np.float32]:
return np.divide(img - mean, std, dtype=np.float32)
def get_pil_resampling(resample: str) -> Image.Resampling:
return _PIL_RESAMPLING_METHODS[resample.lower()]
def pil_to_cv2(image: Image.Image) -> NDArray[np.uint8]:
return cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) # type: ignore
def decode_pil(image_bytes: bytes | IO[bytes] | Image.Image) -> Image.Image:
if isinstance(image_bytes, Image.Image):
return image_bytes
image = Image.open(BytesIO(image_bytes) if isinstance(image_bytes, bytes) else image_bytes)
image.load() # type: ignore
if not image.mode == "RGB":
image = image.convert("RGB")
return image
def decode_cv2(image_bytes: NDArray[np.uint8] | bytes | Image.Image) -> NDArray[np.uint8]:
if isinstance(image_bytes, bytes):
image_bytes = decode_pil(image_bytes) # pillow is much faster than cv2
if isinstance(image_bytes, Image.Image):
return pil_to_cv2(image_bytes)
return image_bytes