0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-07 00:50:23 -05:00
immich/machine-learning/app/models/base.py
Mert bcc36d14a1
feat(ml)!: customizable ML settings (#3891)
* consolidated endpoints, added live configuration

* added ml settings to server

* added settings dashboard

* updated deps, fixed typos

* simplified modelconfig

updated tests

* Added ml setting accordion for admin page

updated tests

* merge `clipText` and `clipVision`

* added face distance setting

clarified setting

* add clip mode in request, dropdown for face models

* polished ml settings

updated descriptions

* update clip field on error

* removed unused import

* add description for image classification threshold

* pin safetensors for arm wheel

updated poetry lock

* moved dto

* set model type only in ml repository

* revert form-data package install

use fetch instead of axios

* added slotted description with link

updated facial recognition description

clarified effect of disabling tasks

* validation before model load

* removed unnecessary getconfig call

* added migration

* updated api

updated api

updated api

---------

Co-authored-by: Alex Tran <alex.tran1502@gmail.com>
2023-08-29 08:58:00 -05:00

131 lines
4.4 KiB
Python

from __future__ import annotations
import os
import pickle
from abc import ABC, abstractmethod
from pathlib import Path
from shutil import rmtree
from typing import Any
from zipfile import BadZipFile
import onnxruntime as ort
from onnxruntime.capi.onnxruntime_pybind11_state import InvalidProtobuf # type: ignore
from ..config import get_cache_dir, settings
from ..schemas import ModelType
class InferenceModel(ABC):
_model_type: ModelType
def __init__(
self,
model_name: str,
cache_dir: Path | str | None = None,
eager: bool = True,
inter_op_num_threads: int = settings.model_inter_op_threads,
intra_op_num_threads: int = settings.model_intra_op_threads,
**model_kwargs: Any,
) -> None:
self.model_name = model_name
self._loaded = False
self._cache_dir = Path(cache_dir) if cache_dir is not None else get_cache_dir(model_name, self.model_type)
loader = self.load if eager else self.download
self.providers = model_kwargs.pop("providers", ["CPUExecutionProvider"])
# don't pre-allocate more memory than needed
self.provider_options = model_kwargs.pop(
"provider_options", [{"arena_extend_strategy": "kSameAsRequested"}] * len(self.providers)
)
self.sess_options = PicklableSessionOptions()
# avoid thread contention between models
if inter_op_num_threads > 1:
self.sess_options.execution_mode = ort.ExecutionMode.ORT_PARALLEL
self.sess_options.inter_op_num_threads = inter_op_num_threads
self.sess_options.intra_op_num_threads = intra_op_num_threads
try:
loader(**model_kwargs)
except (OSError, InvalidProtobuf, BadZipFile):
self.clear_cache()
loader(**model_kwargs)
def download(self, **model_kwargs: Any) -> None:
if not self.cached:
print(f"Downloading {self.model_type.value.replace('_', ' ')} model. This may take a while...")
self._download(**model_kwargs)
def load(self, **model_kwargs: Any) -> None:
self.download(**model_kwargs)
self._load(**model_kwargs)
self._loaded = True
def predict(self, inputs: Any, **model_kwargs: Any) -> Any:
if not self._loaded:
print(f"Loading {self.model_type.value.replace('_', ' ')} model...")
self.load()
if model_kwargs:
self.configure(**model_kwargs)
return self._predict(inputs)
@abstractmethod
def _predict(self, inputs: Any) -> Any:
...
def configure(self, **model_kwargs: Any) -> None:
pass
@abstractmethod
def _download(self, **model_kwargs: Any) -> None:
...
@abstractmethod
def _load(self, **model_kwargs: Any) -> None:
...
@property
def model_type(self) -> ModelType:
return self._model_type
@property
def cache_dir(self) -> Path:
return self._cache_dir
@cache_dir.setter
def cache_dir(self, cache_dir: Path) -> None:
self._cache_dir = cache_dir
@property
def cached(self) -> bool:
return self.cache_dir.exists() and any(self.cache_dir.iterdir())
@classmethod
def from_model_type(cls, model_type: ModelType, model_name: str, **model_kwargs: Any) -> InferenceModel:
subclasses = {subclass._model_type: subclass for subclass in cls.__subclasses__()}
if model_type not in subclasses:
raise ValueError(f"Unsupported model type: {model_type}")
return subclasses[model_type](model_name, **model_kwargs)
def clear_cache(self) -> None:
if not self.cache_dir.exists():
return
if not rmtree.avoids_symlink_attacks:
raise RuntimeError("Attempted to clear cache, but rmtree is not safe on this platform.")
if self.cache_dir.is_dir():
rmtree(self.cache_dir)
else:
self.cache_dir.unlink()
self.cache_dir.mkdir(parents=True, exist_ok=True)
# HF deep copies configs, so we need to make session options picklable
class PicklableSessionOptions(ort.SessionOptions):
def __getstate__(self) -> bytes:
return pickle.dumps([(attr, getattr(self, attr)) for attr in dir(self) if not callable(getattr(self, attr))])
def __setstate__(self, state: Any) -> None:
self.__init__() # type: ignore
for attr, val in pickle.loads(state):
setattr(self, attr, val)