0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-07 00:50:23 -05:00
immich/docker/hwaccel.ml.yml
Mert 95cfe22866
feat(ml)!: cuda and openvino acceleration (#5619)
* cuda and openvino ep, refactor, update dockerfile

* updated workflow

* typing fixes

* added tests

* updated ml test gh action

* updated README

* updated docker-compose

* added compute to hwaccel.yml

* updated gh matrix

updated gh matrix

updated gh matrix

updated gh matrix

updated gh matrix

give up

* remove cuda/arm64 build

* add hwaccel image tags to docker-compose

* remove unnecessary quotes

* add suffix to git tag

* fixed kwargs in base model

* armnn ld_library_path

* update pyproject.toml

* add armnn workflow

* formatting

* consolidate hwaccel files, update docker compose

* update hw transcoding docs

* add ml hwaccel docs

* update dev and prod docker-compose

* added armnn prerequisite docs

* support 3.10

* updated docker-compose comments

* formatting

* test coverage

* don't set arena extend strategy for openvino

* working openvino

* formatting

* fix dockerfile

* added type annotation

* add wsl configuration for openvino

* updated lock file

* copy python3

* comment out extends section

* fix platforms

* simplify workflow suffix tagging

* simplify aio transcoding doc

* update docs and workflow for `hwaccel.yml` change

* revert docs
2024-01-21 18:22:39 -05:00

47 lines
1.2 KiB
YAML

version: "3.8"
# Configurations for hardware-accelerated machine learning
# If using Unraid or another platform that doesn't allow multiple Compose files,
# you can inline the config for a backend by copying its contents
# into the immich-machine-learning service in the docker-compose.yml file.
# See https://immich.app/docs/features/ml-hardware-acceleration for info on usage.
services:
armnn:
devices:
- /dev/mali0:/dev/mali0
volumes:
- /lib/firmware/mali_csffw.bin:/lib/firmware/mali_csffw.bin:ro # Mali firmware for your chipset (not always required depending on the driver)
- /usr/lib/libmali.so:/usr/lib/libmali.so:ro # Mali driver for your chipset (always required)
cpu:
cuda:
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities:
- gpu
- compute
- video
openvino:
device_cgroup_rules:
- "c 189:* rmw"
devices:
- /dev/dri:/dev/dri
volumes:
- /dev/bus/usb:/dev/bus/usb
openvino-wsl:
devices:
- /dev/dri:/dev/dri
- /dev/dxg:/dev/dxg
volumes:
- /dev/bus/usb:/dev/bus/usb
- /usr/lib/wsl:/usr/lib/wsl