0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-07 00:50:23 -05:00
immich/machine-learning/app/models/cache.py
Mert a2f5674bbb
refactor(ml): modularization and styling (#2835)
* basic refactor and styling

* removed batching

* module entrypoint

* removed unused imports

* model superclass,  model cache now in app state

* fixed cache dir and enforced abstract method

---------

Co-authored-by: Alex Tran <alex.tran1502@gmail.com>
2023-06-24 22:18:09 -05:00

92 lines
3 KiB
Python

import asyncio
from aiocache.backends.memory import SimpleMemoryCache
from aiocache.lock import OptimisticLock
from aiocache.plugins import BasePlugin, TimingPlugin
from ..schemas import ModelType
from .base import InferenceModel
class ModelCache:
"""Fetches a model from an in-memory cache, instantiating it if it's missing."""
def __init__(
self,
ttl: float | None = None,
revalidate: bool = False,
timeout: int | None = None,
profiling: bool = False,
):
"""
Args:
ttl: Unloads model after this duration. Disabled if None. Defaults to None.
revalidate: Resets TTL on cache hit. Useful to keep models in memory while active. Defaults to False.
timeout: Maximum allowed time for model to load. Disabled if None. Defaults to None.
profiling: Collects metrics for cache operations, adding slight overhead. Defaults to False.
"""
self.ttl = ttl
plugins = []
if revalidate:
plugins.append(RevalidationPlugin())
if profiling:
plugins.append(TimingPlugin())
self.cache = SimpleMemoryCache(
ttl=ttl, timeout=timeout, plugins=plugins, namespace=None
)
async def get(
self, model_name: str, model_type: ModelType, **model_kwargs
) -> InferenceModel:
"""
Args:
model_name: Name of model in the model hub used for the task.
model_type: Model type or task, which determines which model zoo is used.
Returns:
model: The requested model.
"""
key = self.cache.build_key(model_name, model_type.value)
model = await self.cache.get(key)
if model is None:
async with OptimisticLock(self.cache, key) as lock:
model = await asyncio.get_running_loop().run_in_executor(
None,
lambda: InferenceModel.from_model_type(
model_type, model_name, **model_kwargs
),
)
await lock.cas(model, ttl=self.ttl)
return model
async def get_profiling(self) -> dict[str, float] | None:
if not hasattr(self.cache, "profiling"):
return None
return self.cache.profiling # type: ignore
class RevalidationPlugin(BasePlugin):
"""Revalidates cache item's TTL after cache hit."""
async def post_get(self, client, key, ret=None, namespace=None, **kwargs):
if ret is None:
return
if namespace is not None:
key = client.build_key(key, namespace)
if key in client._handlers:
await client.expire(key, client.ttl)
async def post_multi_get(self, client, keys, ret=None, namespace=None, **kwargs):
if ret is None:
return
for key, val in zip(keys, ret):
if namespace is not None:
key = client.build_key(key, namespace)
if val is not None and key in client._handlers:
await client.expire(key, client.ttl)