0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-07 00:50:23 -05:00
immich/machine-learning/app/conftest.py
Mert df1e8679d9
chore(ml): added testing and github workflow (#2969)
* added testing

* github action for python, made mypy happy

* formatted with black

* minor fixes and styling

* test model cache

* cache test dependencies

* narrowed model cache tests

* moved endpoint tests to their own class

* cleaned up fixtures

* formatting

* removed unused dep
2023-06-27 18:21:33 -05:00

119 lines
4 KiB
Python

from types import SimpleNamespace
from typing import Any, Iterator, TypeAlias
from unittest import mock
import numpy as np
import pytest
from fastapi.testclient import TestClient
from PIL import Image
from .main import app, init_state
ndarray: TypeAlias = np.ndarray[int, np.dtype[np.float32]]
@pytest.fixture
def pil_image() -> Image.Image:
return Image.new("RGB", (600, 800))
@pytest.fixture
def cv_image(pil_image: Image.Image) -> ndarray:
return np.asarray(pil_image)[:, :, ::-1] # PIL uses RGB while cv2 uses BGR
@pytest.fixture
def mock_classifier_pipeline() -> Iterator[mock.Mock]:
with mock.patch("app.models.image_classification.pipeline") as model:
classifier_preds = [
{"label": "that's an image alright", "score": 0.8},
{"label": "well it ends with .jpg", "score": 0.1},
{"label": "idk, im just seeing bytes", "score": 0.05},
{"label": "not sure", "score": 0.04},
{"label": "probably a virus", "score": 0.01},
]
def forward(
inputs: Image.Image | list[Image.Image], **kwargs: Any
) -> list[dict[str, Any]] | list[list[dict[str, Any]]]:
if isinstance(inputs, list) and not all([isinstance(img, Image.Image) for img in inputs]):
raise TypeError
elif not isinstance(inputs, Image.Image):
raise TypeError
if isinstance(inputs, list):
return [classifier_preds] * len(inputs)
return classifier_preds
model.return_value = forward
yield model
@pytest.fixture
def mock_st() -> Iterator[mock.Mock]:
with mock.patch("app.models.clip.SentenceTransformer") as model:
embedding = np.random.rand(512).astype(np.float32)
def encode(inputs: Image.Image | list[Image.Image], **kwargs: Any) -> ndarray | list[ndarray]:
# mypy complains unless isinstance(inputs, list) is used explicitly
img_batch = isinstance(inputs, list) and all([isinstance(inst, Image.Image) for inst in inputs])
text_batch = isinstance(inputs, list) and all([isinstance(inst, str) for inst in inputs])
if isinstance(inputs, list) and not any([img_batch, text_batch]):
raise TypeError
if isinstance(inputs, list):
return np.stack([embedding] * len(inputs))
return embedding
mocked = mock.Mock()
mocked.encode = encode
model.return_value = mocked
yield model
@pytest.fixture
def mock_faceanalysis() -> Iterator[mock.Mock]:
with mock.patch("app.models.facial_recognition.FaceAnalysis") as model:
face_preds = [
SimpleNamespace( # this is so these fields can be accessed through dot notation
**{
"bbox": np.random.rand(4).astype(np.float32),
"kps": np.random.rand(5, 2).astype(np.float32),
"det_score": np.array([0.67]).astype(np.float32),
"normed_embedding": np.random.rand(512).astype(np.float32),
}
),
SimpleNamespace(
**{
"bbox": np.random.rand(4).astype(np.float32),
"kps": np.random.rand(5, 2).astype(np.float32),
"det_score": np.array([0.4]).astype(np.float32),
"normed_embedding": np.random.rand(512).astype(np.float32),
}
),
]
def get(image: np.ndarray[int, np.dtype[np.float32]], **kwargs: Any) -> list[SimpleNamespace]:
if not isinstance(image, np.ndarray):
raise TypeError
return face_preds
mocked = mock.Mock()
mocked.get = get
model.return_value = mocked
yield model
@pytest.fixture
def mock_get_model() -> Iterator[mock.Mock]:
with mock.patch("app.models.cache.InferenceModel.from_model_type", autospec=True) as mocked:
yield mocked
@pytest.fixture(scope="session")
def deployed_app() -> TestClient:
init_state()
return TestClient(app)