mirror of
https://github.com/immich-app/immich.git
synced 2025-01-28 00:59:18 -05:00
332a865ce6
* refactor: migrate person repository to kysely * `asVector` begone * linting * fix metadata faces * update test --------- Co-authored-by: Alex <alex.tran1502@gmail.com> Co-authored-by: mertalev <101130780+mertalev@users.noreply.github.com>
78 lines
2.6 KiB
Python
78 lines
2.6 KiB
Python
import string
|
|
from io import BytesIO
|
|
from typing import IO
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import orjson
|
|
from numpy.typing import NDArray
|
|
from PIL import Image
|
|
|
|
_PIL_RESAMPLING_METHODS = {resampling.name.lower(): resampling for resampling in Image.Resampling}
|
|
_PUNCTUATION_TRANS = str.maketrans("", "", string.punctuation)
|
|
|
|
|
|
def resize_pil(img: Image.Image, size: int) -> Image.Image:
|
|
if img.width < img.height:
|
|
return img.resize((size, int((img.height / img.width) * size)), resample=Image.Resampling.BICUBIC)
|
|
else:
|
|
return img.resize((int((img.width / img.height) * size), size), resample=Image.Resampling.BICUBIC)
|
|
|
|
|
|
# https://stackoverflow.com/a/60883103
|
|
def crop_pil(img: Image.Image, size: int) -> Image.Image:
|
|
left = int((img.size[0] / 2) - (size / 2))
|
|
upper = int((img.size[1] / 2) - (size / 2))
|
|
right = left + size
|
|
lower = upper + size
|
|
|
|
return img.crop((left, upper, right, lower))
|
|
|
|
|
|
def to_numpy(img: Image.Image) -> NDArray[np.float32]:
|
|
return np.asarray(img if img.mode == "RGB" else img.convert("RGB"), dtype=np.float32) / 255.0
|
|
|
|
|
|
def normalize(
|
|
img: NDArray[np.float32], mean: float | NDArray[np.float32], std: float | NDArray[np.float32]
|
|
) -> NDArray[np.float32]:
|
|
return np.divide(img - mean, std, dtype=np.float32)
|
|
|
|
|
|
def get_pil_resampling(resample: str) -> Image.Resampling:
|
|
return _PIL_RESAMPLING_METHODS[resample.lower()]
|
|
|
|
|
|
def pil_to_cv2(image: Image.Image) -> NDArray[np.uint8]:
|
|
return cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) # type: ignore
|
|
|
|
|
|
def decode_pil(image_bytes: bytes | IO[bytes] | Image.Image) -> Image.Image:
|
|
if isinstance(image_bytes, Image.Image):
|
|
return image_bytes
|
|
image: Image.Image = Image.open(BytesIO(image_bytes) if isinstance(image_bytes, bytes) else image_bytes)
|
|
image.load()
|
|
if not image.mode == "RGB":
|
|
image = image.convert("RGB")
|
|
return image
|
|
|
|
|
|
def decode_cv2(image_bytes: NDArray[np.uint8] | bytes | Image.Image) -> NDArray[np.uint8]:
|
|
if isinstance(image_bytes, bytes):
|
|
image_bytes = decode_pil(image_bytes) # pillow is much faster than cv2
|
|
if isinstance(image_bytes, Image.Image):
|
|
return pil_to_cv2(image_bytes)
|
|
return image_bytes
|
|
|
|
|
|
def clean_text(text: str, canonicalize: bool = False) -> str:
|
|
text = " ".join(text.split())
|
|
if canonicalize:
|
|
text = text.translate(_PUNCTUATION_TRANS).lower()
|
|
return text
|
|
|
|
|
|
# this allows the client to use the array as a string without deserializing only to serialize back to a string
|
|
# TODO: use this in a less invasive way
|
|
def serialize_np_array(arr: NDArray[np.float32]) -> str:
|
|
return orjson.dumps(arr, option=orjson.OPT_SERIALIZE_NUMPY).decode()
|