mirror of
https://github.com/immich-app/immich.git
synced 2025-01-21 00:52:43 -05:00
d5a9294eeb
* Add additional variables to preload part ML models * Add additional variables to preload part ML models * Add additional variables to preload part ML models * Add additional variables to preload part ML models * Add additional variables to preload part ML models * Add additional variables to preload part ML models * Add additional variables to preload part ML models * Add additional variables to preload part ML models * Add additional variables to preload part ML models * Update config.py * Add additional variables to preload part ML models * Add additional variables to preload part ML models * Apply formatting * minor update * formatting * root validator * minor update * minor update * minor update * change to support explicit models * minor update * minor change * minor change * minor change * minor update * add logs, resolve errors * minor change * add new enviornment variables * minor revisons * remove comments * add additional variables to ML (fixed) * add additional variables to ML (fixed) * add additional variables to ML * formatting * remove comment * remove mypy error * remove unused module * merge f strings
150 lines
4.7 KiB
Python
150 lines
4.7 KiB
Python
import concurrent.futures
|
|
import logging
|
|
import os
|
|
import sys
|
|
from pathlib import Path
|
|
from socket import socket
|
|
|
|
from gunicorn.arbiter import Arbiter
|
|
from pydantic import BaseModel
|
|
from pydantic_settings import BaseSettings, SettingsConfigDict
|
|
from rich.console import Console
|
|
from rich.logging import RichHandler
|
|
from uvicorn import Server
|
|
from uvicorn.workers import UvicornWorker
|
|
|
|
|
|
class ClipSettings(BaseModel):
|
|
textual: str | None = None
|
|
visual: str | None = None
|
|
|
|
|
|
class FacialRecognitionSettings(BaseModel):
|
|
recognition: str | None = None
|
|
detection: str | None = None
|
|
|
|
|
|
class PreloadModelData(BaseModel):
|
|
clip_fallback: str | None = os.getenv("MACHINE_LEARNING_PRELOAD__CLIP", None)
|
|
facial_recognition_fallback: str | None = os.getenv("MACHINE_LEARNING_PRELOAD__FACIAL_RECOGNITION", None)
|
|
if clip_fallback is not None:
|
|
os.environ["MACHINE_LEARNING_PRELOAD__CLIP__TEXTUAL"] = clip_fallback
|
|
os.environ["MACHINE_LEARNING_PRELOAD__CLIP__VISUAL"] = clip_fallback
|
|
del os.environ["MACHINE_LEARNING_PRELOAD__CLIP"]
|
|
if facial_recognition_fallback is not None:
|
|
os.environ["MACHINE_LEARNING_PRELOAD__FACIAL_RECOGNITION__RECOGNITION"] = facial_recognition_fallback
|
|
os.environ["MACHINE_LEARNING_PRELOAD__FACIAL_RECOGNITION__DETECTION"] = facial_recognition_fallback
|
|
del os.environ["MACHINE_LEARNING_PRELOAD__FACIAL_RECOGNITION"]
|
|
clip: ClipSettings = ClipSettings()
|
|
facial_recognition: FacialRecognitionSettings = FacialRecognitionSettings()
|
|
|
|
|
|
class MaxBatchSize(BaseModel):
|
|
facial_recognition: int | None = None
|
|
|
|
|
|
class Settings(BaseSettings):
|
|
model_config = SettingsConfigDict(
|
|
env_prefix="MACHINE_LEARNING_",
|
|
case_sensitive=False,
|
|
env_nested_delimiter="__",
|
|
protected_namespaces=("settings_",),
|
|
)
|
|
|
|
cache_folder: Path = Path("/cache")
|
|
model_ttl: int = 300
|
|
model_ttl_poll_s: int = 10
|
|
host: str = "0.0.0.0"
|
|
port: int = 3003
|
|
workers: int = 1
|
|
test_full: bool = False
|
|
request_threads: int = os.cpu_count() or 4
|
|
model_inter_op_threads: int = 0
|
|
model_intra_op_threads: int = 0
|
|
ann: bool = True
|
|
ann_fp16_turbo: bool = False
|
|
ann_tuning_level: int = 2
|
|
preload: PreloadModelData | None = None
|
|
max_batch_size: MaxBatchSize | None = None
|
|
|
|
@property
|
|
def device_id(self) -> str:
|
|
return os.environ.get("MACHINE_LEARNING_DEVICE_ID", "0")
|
|
|
|
|
|
class LogSettings(BaseSettings):
|
|
model_config = SettingsConfigDict(case_sensitive=False)
|
|
|
|
immich_log_level: str = "info"
|
|
no_color: bool = False
|
|
|
|
|
|
_clean_name = str.maketrans(":\\/", "___", ".")
|
|
|
|
|
|
def clean_name(model_name: str) -> str:
|
|
return model_name.split("/")[-1].translate(_clean_name)
|
|
|
|
|
|
LOG_LEVELS: dict[str, int] = {
|
|
"critical": logging.ERROR,
|
|
"error": logging.ERROR,
|
|
"warning": logging.WARNING,
|
|
"warn": logging.WARNING,
|
|
"info": logging.INFO,
|
|
"log": logging.INFO,
|
|
"debug": logging.DEBUG,
|
|
"verbose": logging.DEBUG,
|
|
}
|
|
|
|
settings = Settings()
|
|
log_settings = LogSettings()
|
|
|
|
LOG_LEVEL = LOG_LEVELS.get(log_settings.immich_log_level.lower(), logging.INFO)
|
|
|
|
|
|
class CustomRichHandler(RichHandler):
|
|
def __init__(self) -> None:
|
|
console = Console(color_system="standard", no_color=log_settings.no_color)
|
|
self.excluded = ["uvicorn", "starlette", "fastapi"]
|
|
super().__init__(
|
|
show_path=False,
|
|
omit_repeated_times=False,
|
|
console=console,
|
|
rich_tracebacks=True,
|
|
tracebacks_suppress=[*self.excluded, concurrent.futures],
|
|
tracebacks_show_locals=LOG_LEVEL == logging.DEBUG,
|
|
)
|
|
|
|
# hack to exclude certain modules from rich tracebacks
|
|
def emit(self, record: logging.LogRecord) -> None:
|
|
if record.exc_info is not None:
|
|
tb = record.exc_info[2]
|
|
while tb is not None:
|
|
if any(excluded in tb.tb_frame.f_code.co_filename for excluded in self.excluded):
|
|
tb.tb_frame.f_locals["_rich_traceback_omit"] = True
|
|
tb = tb.tb_next
|
|
|
|
return super().emit(record)
|
|
|
|
|
|
log = logging.getLogger("ml.log")
|
|
log.setLevel(LOG_LEVEL)
|
|
|
|
|
|
# patches this issue https://github.com/encode/uvicorn/discussions/1803
|
|
class CustomUvicornServer(Server):
|
|
async def shutdown(self, sockets: list[socket] | None = None) -> None:
|
|
for sock in sockets or []:
|
|
sock.close()
|
|
await super().shutdown()
|
|
|
|
|
|
class CustomUvicornWorker(UvicornWorker):
|
|
async def _serve(self) -> None:
|
|
self.config.app = self.wsgi
|
|
server = CustomUvicornServer(config=self.config)
|
|
self._install_sigquit_handler()
|
|
await server.serve(sockets=self.sockets)
|
|
if not server.started:
|
|
sys.exit(Arbiter.WORKER_BOOT_ERROR)
|