0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-21 00:52:43 -05:00
immich/machine-learning/app/config.py
Tempest d5a9294eeb
feat: Add additional env variables to ML container (#15398)
* Add additional variables to preload part ML models

* Add additional variables to preload part ML models

* Add additional variables to preload part ML models

* Add additional variables to preload part ML models

* Add additional variables to preload part ML models

* Add additional variables to preload part ML models

* Add additional variables to preload part ML models

* Add additional variables to preload part ML models

* Add additional variables to preload part ML models

* Update config.py

* Add additional variables to preload part ML models

* Add additional variables to preload part ML models

* Apply formatting

* minor update

* formatting

* root validator

* minor update

* minor update

* minor update

* change to support explicit models

* minor update

* minor change

* minor change

* minor change

* minor update

* add logs, resolve errors

* minor change

* add new enviornment variables

* minor revisons

* remove comments

* add additional variables to ML (fixed)

* add additional variables to ML (fixed)

* add additional variables to ML

* formatting

* remove comment

* remove mypy error

* remove unused module

* merge f strings
2025-01-17 17:22:05 -05:00

150 lines
4.7 KiB
Python

import concurrent.futures
import logging
import os
import sys
from pathlib import Path
from socket import socket
from gunicorn.arbiter import Arbiter
from pydantic import BaseModel
from pydantic_settings import BaseSettings, SettingsConfigDict
from rich.console import Console
from rich.logging import RichHandler
from uvicorn import Server
from uvicorn.workers import UvicornWorker
class ClipSettings(BaseModel):
textual: str | None = None
visual: str | None = None
class FacialRecognitionSettings(BaseModel):
recognition: str | None = None
detection: str | None = None
class PreloadModelData(BaseModel):
clip_fallback: str | None = os.getenv("MACHINE_LEARNING_PRELOAD__CLIP", None)
facial_recognition_fallback: str | None = os.getenv("MACHINE_LEARNING_PRELOAD__FACIAL_RECOGNITION", None)
if clip_fallback is not None:
os.environ["MACHINE_LEARNING_PRELOAD__CLIP__TEXTUAL"] = clip_fallback
os.environ["MACHINE_LEARNING_PRELOAD__CLIP__VISUAL"] = clip_fallback
del os.environ["MACHINE_LEARNING_PRELOAD__CLIP"]
if facial_recognition_fallback is not None:
os.environ["MACHINE_LEARNING_PRELOAD__FACIAL_RECOGNITION__RECOGNITION"] = facial_recognition_fallback
os.environ["MACHINE_LEARNING_PRELOAD__FACIAL_RECOGNITION__DETECTION"] = facial_recognition_fallback
del os.environ["MACHINE_LEARNING_PRELOAD__FACIAL_RECOGNITION"]
clip: ClipSettings = ClipSettings()
facial_recognition: FacialRecognitionSettings = FacialRecognitionSettings()
class MaxBatchSize(BaseModel):
facial_recognition: int | None = None
class Settings(BaseSettings):
model_config = SettingsConfigDict(
env_prefix="MACHINE_LEARNING_",
case_sensitive=False,
env_nested_delimiter="__",
protected_namespaces=("settings_",),
)
cache_folder: Path = Path("/cache")
model_ttl: int = 300
model_ttl_poll_s: int = 10
host: str = "0.0.0.0"
port: int = 3003
workers: int = 1
test_full: bool = False
request_threads: int = os.cpu_count() or 4
model_inter_op_threads: int = 0
model_intra_op_threads: int = 0
ann: bool = True
ann_fp16_turbo: bool = False
ann_tuning_level: int = 2
preload: PreloadModelData | None = None
max_batch_size: MaxBatchSize | None = None
@property
def device_id(self) -> str:
return os.environ.get("MACHINE_LEARNING_DEVICE_ID", "0")
class LogSettings(BaseSettings):
model_config = SettingsConfigDict(case_sensitive=False)
immich_log_level: str = "info"
no_color: bool = False
_clean_name = str.maketrans(":\\/", "___", ".")
def clean_name(model_name: str) -> str:
return model_name.split("/")[-1].translate(_clean_name)
LOG_LEVELS: dict[str, int] = {
"critical": logging.ERROR,
"error": logging.ERROR,
"warning": logging.WARNING,
"warn": logging.WARNING,
"info": logging.INFO,
"log": logging.INFO,
"debug": logging.DEBUG,
"verbose": logging.DEBUG,
}
settings = Settings()
log_settings = LogSettings()
LOG_LEVEL = LOG_LEVELS.get(log_settings.immich_log_level.lower(), logging.INFO)
class CustomRichHandler(RichHandler):
def __init__(self) -> None:
console = Console(color_system="standard", no_color=log_settings.no_color)
self.excluded = ["uvicorn", "starlette", "fastapi"]
super().__init__(
show_path=False,
omit_repeated_times=False,
console=console,
rich_tracebacks=True,
tracebacks_suppress=[*self.excluded, concurrent.futures],
tracebacks_show_locals=LOG_LEVEL == logging.DEBUG,
)
# hack to exclude certain modules from rich tracebacks
def emit(self, record: logging.LogRecord) -> None:
if record.exc_info is not None:
tb = record.exc_info[2]
while tb is not None:
if any(excluded in tb.tb_frame.f_code.co_filename for excluded in self.excluded):
tb.tb_frame.f_locals["_rich_traceback_omit"] = True
tb = tb.tb_next
return super().emit(record)
log = logging.getLogger("ml.log")
log.setLevel(LOG_LEVEL)
# patches this issue https://github.com/encode/uvicorn/discussions/1803
class CustomUvicornServer(Server):
async def shutdown(self, sockets: list[socket] | None = None) -> None:
for sock in sockets or []:
sock.close()
await super().shutdown()
class CustomUvicornWorker(UvicornWorker):
async def _serve(self) -> None:
self.config.app = self.wsgi
server = CustomUvicornServer(config=self.config)
self._install_sigquit_handler()
await server.serve(sockets=self.sockets)
if not server.started:
sys.exit(Arbiter.WORKER_BOOT_ERROR)