import json from abc import abstractmethod from functools import cached_property from io import BytesIO from pathlib import Path from typing import Any, Literal import numpy as np from numpy.typing import NDArray from PIL import Image from tokenizers import Encoding, Tokenizer from app.config import clean_name, log from app.models.transforms import crop, get_pil_resampling, normalize, resize, to_numpy from app.schemas import ModelType from .base import InferenceModel class BaseCLIPEncoder(InferenceModel): _model_type = ModelType.CLIP def __init__( self, model_name: str, cache_dir: Path | str | None = None, mode: Literal["text", "vision"] | None = None, **model_kwargs: Any, ) -> None: self.mode = mode super().__init__(model_name, cache_dir, **model_kwargs) def _load(self) -> None: if self.mode == "text" or self.mode is None: log.debug(f"Loading clip text model '{self.model_name}'") self.text_model = self._make_session(self.textual_path) log.debug(f"Loaded clip text model '{self.model_name}'") if self.mode == "vision" or self.mode is None: log.debug(f"Loading clip vision model '{self.model_name}'") self.vision_model = self._make_session(self.visual_path) log.debug(f"Loaded clip vision model '{self.model_name}'") def _predict(self, image_or_text: Image.Image | str) -> NDArray[np.float32]: if isinstance(image_or_text, bytes): image_or_text = Image.open(BytesIO(image_or_text)) match image_or_text: case Image.Image(): if self.mode == "text": raise TypeError("Cannot encode image as text-only model") outputs: NDArray[np.float32] = self.vision_model.run(None, self.transform(image_or_text))[0][0] case str(): if self.mode == "vision": raise TypeError("Cannot encode text as vision-only model") outputs = self.text_model.run(None, self.tokenize(image_or_text))[0][0] case _: raise TypeError(f"Expected Image or str, but got: {type(image_or_text)}") return outputs @abstractmethod def tokenize(self, text: str) -> dict[str, NDArray[np.int32]]: pass @abstractmethod def transform(self, image: Image.Image) -> dict[str, NDArray[np.float32]]: pass @property def textual_dir(self) -> Path: return self.cache_dir / "textual" @property def visual_dir(self) -> Path: return self.cache_dir / "visual" @property def model_cfg_path(self) -> Path: return self.cache_dir / "config.json" @property def textual_path(self) -> Path: return self.textual_dir / "model.onnx" @property def visual_path(self) -> Path: return self.visual_dir / "model.onnx" @property def tokenizer_file_path(self) -> Path: return self.textual_dir / "tokenizer.json" @property def tokenizer_cfg_path(self) -> Path: return self.textual_dir / "tokenizer_config.json" @property def preprocess_cfg_path(self) -> Path: return self.visual_dir / "preprocess_cfg.json" @property def cached(self) -> bool: return self.textual_path.is_file() and self.visual_path.is_file() @cached_property def model_cfg(self) -> dict[str, Any]: log.debug(f"Loading model config for CLIP model '{self.model_name}'") model_cfg: dict[str, Any] = json.load(self.model_cfg_path.open()) log.debug(f"Loaded model config for CLIP model '{self.model_name}'") return model_cfg @cached_property def tokenizer_file(self) -> dict[str, Any]: log.debug(f"Loading tokenizer file for CLIP model '{self.model_name}'") tokenizer_file: dict[str, Any] = json.load(self.tokenizer_file_path.open()) log.debug(f"Loaded tokenizer file for CLIP model '{self.model_name}'") return tokenizer_file @cached_property def tokenizer_cfg(self) -> dict[str, Any]: log.debug(f"Loading tokenizer config for CLIP model '{self.model_name}'") tokenizer_cfg: dict[str, Any] = json.load(self.tokenizer_cfg_path.open()) log.debug(f"Loaded tokenizer config for CLIP model '{self.model_name}'") return tokenizer_cfg @cached_property def preprocess_cfg(self) -> dict[str, Any]: log.debug(f"Loading visual preprocessing config for CLIP model '{self.model_name}'") preprocess_cfg: dict[str, Any] = json.load(self.preprocess_cfg_path.open()) log.debug(f"Loaded visual preprocessing config for CLIP model '{self.model_name}'") return preprocess_cfg class OpenCLIPEncoder(BaseCLIPEncoder): def __init__( self, model_name: str, cache_dir: Path | str | None = None, mode: Literal["text", "vision"] | None = None, **model_kwargs: Any, ) -> None: super().__init__(clean_name(model_name), cache_dir, mode, **model_kwargs) def _load(self) -> None: super()._load() text_cfg: dict[str, Any] = self.model_cfg["text_cfg"] context_length: int = text_cfg.get("context_length", 77) pad_token: int = self.tokenizer_cfg["pad_token"] size: list[int] | int = self.preprocess_cfg["size"] self.size = size[0] if isinstance(size, list) else size self.resampling = get_pil_resampling(self.preprocess_cfg["interpolation"]) self.mean = np.array(self.preprocess_cfg["mean"], dtype=np.float32) self.std = np.array(self.preprocess_cfg["std"], dtype=np.float32) log.debug(f"Loading tokenizer for CLIP model '{self.model_name}'") self.tokenizer: Tokenizer = Tokenizer.from_file(self.tokenizer_file_path.as_posix()) pad_id: int = self.tokenizer.token_to_id(pad_token) self.tokenizer.enable_padding(length=context_length, pad_token=pad_token, pad_id=pad_id) self.tokenizer.enable_truncation(max_length=context_length) log.debug(f"Loaded tokenizer for CLIP model '{self.model_name}'") def tokenize(self, text: str) -> dict[str, NDArray[np.int32]]: tokens: Encoding = self.tokenizer.encode(text) return {"text": np.array([tokens.ids], dtype=np.int32)} def transform(self, image: Image.Image) -> dict[str, NDArray[np.float32]]: image = resize(image, self.size) image = crop(image, self.size) image_np = to_numpy(image) image_np = normalize(image_np, self.mean, self.std) return {"image": np.expand_dims(image_np.transpose(2, 0, 1), 0)} class MCLIPEncoder(OpenCLIPEncoder): def tokenize(self, text: str) -> dict[str, NDArray[np.int32]]: tokens: Encoding = self.tokenizer.encode(text) return { "input_ids": np.array([tokens.ids], dtype=np.int32), "attention_mask": np.array([tokens.attention_mask], dtype=np.int32), }