from __future__ import annotations

from ctypes import CDLL, Array, c_bool, c_char_p, c_int, c_ulong, c_void_p
from os.path import exists
from typing import Any, Protocol, TypeVar

import numpy as np
from numpy.typing import NDArray

from app.config import log

try:
    CDLL("libmali.so")  # fail if libmali.so is not mounted into container
    libann = CDLL("libann.so")
    libann.init.argtypes = c_int, c_int, c_char_p
    libann.init.restype = c_void_p
    libann.load.argtypes = c_void_p, c_char_p, c_bool, c_bool, c_bool, c_char_p
    libann.load.restype = c_int
    libann.execute.argtypes = c_void_p, c_int, Array[c_void_p], Array[c_void_p]
    libann.unload.argtypes = c_void_p, c_int
    libann.destroy.argtypes = (c_void_p,)
    libann.shape.argtypes = c_void_p, c_int, c_bool, c_int
    libann.shape.restype = c_ulong
    libann.tensors.argtypes = c_void_p, c_int, c_bool
    libann.tensors.restype = c_int
    is_available = True
except OSError as e:
    log.debug("Could not load ANN shared libraries, using ONNX: %s", e)
    is_available = False

T = TypeVar("T", covariant=True)


class Newable(Protocol[T]):
    def new(self) -> None: ...


class _Singleton(type, Newable[T]):
    _instances: dict[_Singleton[T], Newable[T]] = {}

    def __call__(cls, *args: Any, **kwargs: Any) -> Newable[T]:
        if cls not in cls._instances:
            obj: Newable[T] = super(_Singleton, cls).__call__(*args, **kwargs)
            cls._instances[cls] = obj
        else:
            obj = cls._instances[cls]
            obj.new()
        return obj


class Ann(metaclass=_Singleton):
    def __init__(self, log_level: int = 3, tuning_level: int = 1, tuning_file: str | None = None) -> None:
        if not is_available:
            raise RuntimeError("libann is not available!")
        if tuning_level == 0 and tuning_file is None:
            raise ValueError("tuning_level == 0 reads existing tuning information and requires a tuning_file")
        if tuning_level < 0 or tuning_level > 3:
            raise ValueError("tuning_level must be 0 (load from tuning_file), 1, 2 or 3.")
        if log_level < 0 or log_level > 5:
            raise ValueError("log_level must be 0 (trace), 1 (debug), 2 (info), 3 (warning), 4 (error) or 5 (fatal)")
        self.log_level = log_level
        self.tuning_level = tuning_level
        self.tuning_file = tuning_file
        self.output_shapes: dict[int, tuple[tuple[int], ...]] = {}
        self.input_shapes: dict[int, tuple[tuple[int], ...]] = {}
        self.ann: int | None = None
        self.new()

        if self.tuning_file is not None:
            # make sure tuning file exists (without clearing contents)
            # once filled, the tuning file reduces the cost/time of the first
            # inference after model load by 10s of seconds
            open(self.tuning_file, "a").close()

    def new(self) -> None:
        if self.ann is None:
            self.ann = libann.init(
                self.log_level,
                self.tuning_level,
                self.tuning_file.encode() if self.tuning_file is not None else None,
            )
            self.ref_count = 0

        self.ref_count += 1

    def destroy(self) -> None:
        self.ref_count -= 1
        if self.ref_count <= 0 and self.ann is not None:
            libann.destroy(self.ann)
            self.ann = None

    def __del__(self) -> None:
        if self.ann is not None:
            libann.destroy(self.ann)
            self.ann = None

    def load(
        self,
        model_path: str,
        fast_math: bool = True,
        fp16: bool = False,
        cached_network_path: str | None = None,
    ) -> int:
        if not model_path.endswith((".armnn", ".tflite", ".onnx")):
            raise ValueError("model_path must be a file with extension .armnn, .tflite or .onnx")
        if not exists(model_path):
            raise ValueError("model_path must point to an existing file!")

        save_cached_network = False
        if cached_network_path is not None and not exists(cached_network_path):
            save_cached_network = True
            # create empty model cache file
            open(cached_network_path, "a").close()

        net_id: int = libann.load(
            self.ann,
            model_path.encode(),
            fast_math,
            fp16,
            save_cached_network,
            cached_network_path.encode() if cached_network_path is not None else None,
        )
        if net_id < 0:
            raise ValueError("Cannot load model!")

        self.input_shapes[net_id] = tuple(
            self.shape(net_id, input=True, index=i) for i in range(self.tensors(net_id, input=True))
        )
        self.output_shapes[net_id] = tuple(
            self.shape(net_id, input=False, index=i) for i in range(self.tensors(net_id, input=False))
        )
        return net_id

    def unload(self, network_id: int) -> None:
        libann.unload(self.ann, network_id)
        del self.output_shapes[network_id]

    def execute(self, network_id: int, input_tensors: list[NDArray[np.float32]]) -> list[NDArray[np.float32]]:
        if not isinstance(input_tensors, list):
            raise ValueError("input_tensors needs to be a list!")
        net_input_shapes = self.input_shapes[network_id]
        if len(input_tensors) != len(net_input_shapes):
            raise ValueError(f"input_tensors lengths {len(input_tensors)} != network inputs {len(net_input_shapes)}")
        for net_input_shape, input_tensor in zip(net_input_shapes, input_tensors):
            if net_input_shape != input_tensor.shape:
                raise ValueError(f"input_tensor shape {input_tensor.shape} != network input shape {net_input_shape}")
            if not input_tensor.flags.c_contiguous:
                raise ValueError("input_tensors must be c_contiguous numpy ndarrays")
        output_tensors: list[NDArray[np.float32]] = [
            np.ndarray(s, dtype=np.float32) for s in self.output_shapes[network_id]
        ]
        input_type = c_void_p * len(input_tensors)
        inputs = input_type(*[t.ctypes.data_as(c_void_p) for t in input_tensors])
        output_type = c_void_p * len(output_tensors)
        outputs = output_type(*[t.ctypes.data_as(c_void_p) for t in output_tensors])
        libann.execute(self.ann, network_id, inputs, outputs)
        return output_tensors

    def shape(self, network_id: int, input: bool = False, index: int = 0) -> tuple[int]:
        s = libann.shape(self.ann, network_id, input, index)
        a = []
        while s != 0:
            a.append(s & 0xFFFF)
            s >>= 16
        return tuple(a)

    def tensors(self, network_id: int, input: bool = False) -> int:
        tensors: int = libann.tensors(self.ann, network_id, input)
        return tensors