import os from io import BytesIO from typing import Any import cv2 import numpy as np import uvicorn from fastapi import Body, Depends, FastAPI from PIL import Image from .config import settings from .models.base import InferenceModel from .models.cache import ModelCache from .schemas import ( EmbeddingResponse, FaceResponse, MessageResponse, ModelType, TagResponse, TextModelRequest, TextResponse, ) app = FastAPI() @app.on_event("startup") async def startup_event() -> None: app.state.model_cache = ModelCache(ttl=settings.model_ttl, revalidate=True) models = [ (settings.classification_model, ModelType.IMAGE_CLASSIFICATION), (settings.clip_image_model, ModelType.CLIP), (settings.clip_text_model, ModelType.CLIP), (settings.facial_recognition_model, ModelType.FACIAL_RECOGNITION), ] # Get all models for model_name, model_type in models: if settings.eager_startup: await app.state.model_cache.get(model_name, model_type) else: InferenceModel.from_model_type(model_type, model_name) def dep_pil_image(byte_image: bytes = Body(...)) -> Image.Image: return Image.open(BytesIO(byte_image)) def dep_cv_image(byte_image: bytes = Body(...)) -> cv2.Mat: byte_image_np = np.frombuffer(byte_image, np.uint8) return cv2.imdecode(byte_image_np, cv2.IMREAD_COLOR) @app.get("/", response_model=MessageResponse) async def root() -> dict[str, str]: return {"message": "Immich ML"} @app.get("/ping", response_model=TextResponse) def ping() -> str: return "pong" @app.post( "/image-classifier/tag-image", response_model=TagResponse, status_code=200, ) async def image_classification( image: Image.Image = Depends(dep_pil_image), ) -> list[str]: model = await app.state.model_cache.get( settings.classification_model, ModelType.IMAGE_CLASSIFICATION ) labels = model.predict(image) return labels @app.post( "/sentence-transformer/encode-image", response_model=EmbeddingResponse, status_code=200, ) async def clip_encode_image( image: Image.Image = Depends(dep_pil_image), ) -> list[float]: model = await app.state.model_cache.get(settings.clip_image_model, ModelType.CLIP) embedding = model.predict(image) return embedding @app.post( "/sentence-transformer/encode-text", response_model=EmbeddingResponse, status_code=200, ) async def clip_encode_text(payload: TextModelRequest) -> list[float]: model = await app.state.model_cache.get(settings.clip_text_model, ModelType.CLIP) embedding = model.predict(payload.text) return embedding @app.post( "/facial-recognition/detect-faces", response_model=FaceResponse, status_code=200, ) async def facial_recognition( image: cv2.Mat = Depends(dep_cv_image), ) -> list[dict[str, Any]]: model = await app.state.model_cache.get( settings.facial_recognition_model, ModelType.FACIAL_RECOGNITION ) faces = model.predict(image) return faces if __name__ == "__main__": is_dev = os.getenv("NODE_ENV") == "development" uvicorn.run( "app.main:app", host=settings.host, port=settings.port, reload=is_dev, workers=settings.workers, )