0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-21 00:52:43 -05:00

fix(ml): armnn not being used (#10929)

* fix armnn not being used, move fallback handling to main, add tests

* formatting
This commit is contained in:
Mert 2024-07-10 10:20:43 -04:00 committed by GitHub
parent 59aa347912
commit f43721ec92
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
7 changed files with 111 additions and 44 deletions

View file

@ -168,6 +168,12 @@ def warning() -> Iterator[mock.Mock]:
yield mocked yield mocked
@pytest.fixture(scope="function")
def exception() -> Iterator[mock.Mock]:
with mock.patch.object(log, "exception") as mocked:
yield mocked
@pytest.fixture(scope="function") @pytest.fixture(scope="function")
def snapshot_download() -> Iterator[mock.Mock]: def snapshot_download() -> Iterator[mock.Mock]:
with mock.patch("app.models.base.snapshot_download") as mocked: with mock.patch("app.models.base.snapshot_download") as mocked:

View file

@ -29,6 +29,7 @@ from .schemas import (
InferenceEntry, InferenceEntry,
InferenceResponse, InferenceResponse,
MessageResponse, MessageResponse,
ModelFormat,
ModelIdentity, ModelIdentity,
ModelTask, ModelTask,
ModelType, ModelType,
@ -195,7 +196,17 @@ async def load(model: InferenceModel) -> InferenceModel:
if model.load_attempts > 1: if model.load_attempts > 1:
raise HTTPException(500, f"Failed to load model '{model.model_name}'") raise HTTPException(500, f"Failed to load model '{model.model_name}'")
with lock: with lock:
model.load() try:
model.load()
except FileNotFoundError as e:
if model.model_format == ModelFormat.ONNX:
raise e
log.exception(e)
log.warning(
f"{model.model_format.upper()} is available, but model '{model.model_name}' does not support it."
)
model.model_format = ModelFormat.ONNX
model.load()
return model return model
try: try:

View file

@ -23,7 +23,7 @@ class InferenceModel(ABC):
self, self,
model_name: str, model_name: str,
cache_dir: Path | str | None = None, cache_dir: Path | str | None = None,
preferred_format: ModelFormat | None = None, model_format: ModelFormat | None = None,
session: ModelSession | None = None, session: ModelSession | None = None,
**model_kwargs: Any, **model_kwargs: Any,
) -> None: ) -> None:
@ -31,7 +31,7 @@ class InferenceModel(ABC):
self.load_attempts = 0 self.load_attempts = 0
self.model_name = clean_name(model_name) self.model_name = clean_name(model_name)
self.cache_dir = Path(cache_dir) if cache_dir is not None else self._cache_dir_default self.cache_dir = Path(cache_dir) if cache_dir is not None else self._cache_dir_default
self.model_format = preferred_format if preferred_format is not None else self._model_format_default self.model_format = model_format if model_format is not None else self._model_format_default
if session is not None: if session is not None:
self.session = session self.session = session
@ -48,7 +48,7 @@ class InferenceModel(ABC):
self.load_attempts += 1 self.load_attempts += 1
self.download() self.download()
attempt = f"Attempt #{self.load_attempts + 1} to load" if self.load_attempts else "Loading" attempt = f"Attempt #{self.load_attempts} to load" if self.load_attempts > 1 else "Loading"
log.info(f"{attempt} {self.model_type.replace('-', ' ')} model '{self.model_name}' to memory") log.info(f"{attempt} {self.model_type.replace('-', ' ')} model '{self.model_name}' to memory")
self.session = self._load() self.session = self._load()
self.loaded = True self.loaded = True
@ -101,6 +101,9 @@ class InferenceModel(ABC):
self.cache_dir.mkdir(parents=True, exist_ok=True) self.cache_dir.mkdir(parents=True, exist_ok=True)
def _make_session(self, model_path: Path) -> ModelSession: def _make_session(self, model_path: Path) -> ModelSession:
if not model_path.is_file():
raise FileNotFoundError(f"Model file not found: {model_path}")
match model_path.suffix: match model_path.suffix:
case ".armnn": case ".armnn":
session: ModelSession = AnnSession(model_path) session: ModelSession = AnnSession(model_path)
@ -144,17 +147,13 @@ class InferenceModel(ABC):
@property @property
def model_format(self) -> ModelFormat: def model_format(self) -> ModelFormat:
return self._preferred_format return self._model_format
@model_format.setter @model_format.setter
def model_format(self, preferred_format: ModelFormat) -> None: def model_format(self, model_format: ModelFormat) -> None:
log.debug(f"Setting preferred format to {preferred_format}") log.debug(f"Setting model format to {model_format}")
self._preferred_format = preferred_format self._model_format = model_format
@property @property
def _model_format_default(self) -> ModelFormat: def _model_format_default(self) -> ModelFormat:
prefer_ann = ann.ann.is_available and settings.ann return ModelFormat.ARMNN if ann.ann.is_available and settings.ann else ModelFormat.ONNX
ann_exists = (self.model_dir / "model.armnn").is_file()
if prefer_ann and not ann_exists:
log.warning(f"ARM NN is available, but '{self.model_name}' does not support ARM NN. Falling back to ONNX.")
return ModelFormat.ARMNN if prefer_ann and ann_exists else ModelFormat.ONNX

View file

@ -22,11 +22,12 @@ class BaseCLIPTextualEncoder(InferenceModel):
return res return res
def _load(self) -> ModelSession: def _load(self) -> ModelSession:
session = super()._load()
log.debug(f"Loading tokenizer for CLIP model '{self.model_name}'") log.debug(f"Loading tokenizer for CLIP model '{self.model_name}'")
self.tokenizer = self._load_tokenizer() self.tokenizer = self._load_tokenizer()
log.debug(f"Loaded tokenizer for CLIP model '{self.model_name}'") log.debug(f"Loaded tokenizer for CLIP model '{self.model_name}'")
return super()._load() return session
@abstractmethod @abstractmethod
def _load_tokenizer(self) -> Tokenizer: def _load_tokenizer(self) -> Tokenizer:

View file

@ -1,4 +1,3 @@
from pathlib import Path
from typing import Any from typing import Any
import numpy as np import numpy as np
@ -14,15 +13,9 @@ class FaceDetector(InferenceModel):
depends = [] depends = []
identity = (ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION) identity = (ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION)
def __init__( def __init__(self, model_name: str, min_score: float = 0.7, **model_kwargs: Any) -> None:
self,
model_name: str,
min_score: float = 0.7,
cache_dir: Path | str | None = None,
**model_kwargs: Any,
) -> None:
self.min_score = model_kwargs.pop("minScore", min_score) self.min_score = model_kwargs.pop("minScore", min_score)
super().__init__(model_name, cache_dir, **model_kwargs) super().__init__(model_name, **model_kwargs)
def _load(self) -> ModelSession: def _load(self) -> ModelSession:
session = self._make_session(self.model_path) session = self._make_session(self.model_path)

View file

@ -9,7 +9,7 @@ from numpy.typing import NDArray
from onnx.tools.update_model_dims import update_inputs_outputs_dims from onnx.tools.update_model_dims import update_inputs_outputs_dims
from PIL import Image from PIL import Image
from app.config import clean_name, log from app.config import log
from app.models.base import InferenceModel from app.models.base import InferenceModel
from app.models.transforms import decode_cv2 from app.models.transforms import decode_cv2
from app.schemas import FaceDetectionOutput, FacialRecognitionOutput, ModelFormat, ModelSession, ModelTask, ModelType from app.schemas import FaceDetectionOutput, FacialRecognitionOutput, ModelFormat, ModelSession, ModelTask, ModelType
@ -20,20 +20,14 @@ class FaceRecognizer(InferenceModel):
depends = [(ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION)] depends = [(ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION)]
identity = (ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION) identity = (ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION)
def __init__( def __init__(self, model_name: str, min_score: float = 0.7, **model_kwargs: Any) -> None:
self, super().__init__(model_name, **model_kwargs)
model_name: str,
min_score: float = 0.7,
cache_dir: Path | str | None = None,
**model_kwargs: Any,
) -> None:
super().__init__(clean_name(model_name), cache_dir, **model_kwargs)
self.min_score = model_kwargs.pop("minScore", min_score) self.min_score = model_kwargs.pop("minScore", min_score)
self.batch = self.model_format == ModelFormat.ONNX self.batch = self.model_format == ModelFormat.ONNX
def _load(self) -> ModelSession: def _load(self) -> ModelSession:
session = self._make_session(self.model_path) session = self._make_session(self.model_path)
if self.model_format == ModelFormat.ONNX and not has_batch_axis(session): if self.batch and not has_batch_axis(session):
self._add_batch_axis(self.model_path) self._add_batch_axis(self.model_path)
session = self._make_session(self.model_path) session = self._make_session(self.model_path)
self.model = ArcFaceONNX( self.model = ArcFaceONNX(

View file

@ -43,7 +43,7 @@ class TestBase:
assert encoder.cache_dir == cache_dir assert encoder.cache_dir == cache_dir
def test_sets_default_preferred_format(self, mocker: MockerFixture) -> None: def test_sets_default_model_format(self, mocker: MockerFixture) -> None:
mocker.patch.object(settings, "ann", True) mocker.patch.object(settings, "ann", True)
mocker.patch("ann.ann.is_available", False) mocker.patch("ann.ann.is_available", False)
@ -51,7 +51,7 @@ class TestBase:
assert encoder.model_format == ModelFormat.ONNX assert encoder.model_format == ModelFormat.ONNX
def test_sets_default_preferred_format_to_armnn_if_available(self, path: mock.Mock, mocker: MockerFixture) -> None: def test_sets_default_model_format_to_armnn_if_available(self, path: mock.Mock, mocker: MockerFixture) -> None:
mocker.patch.object(settings, "ann", True) mocker.patch.object(settings, "ann", True)
mocker.patch("ann.ann.is_available", True) mocker.patch("ann.ann.is_available", True)
path.suffix = ".armnn" path.suffix = ".armnn"
@ -60,11 +60,11 @@ class TestBase:
assert encoder.model_format == ModelFormat.ARMNN assert encoder.model_format == ModelFormat.ARMNN
def test_sets_preferred_format_kwarg(self, mocker: MockerFixture) -> None: def test_sets_model_format_kwarg(self, mocker: MockerFixture) -> None:
mocker.patch.object(settings, "ann", False) mocker.patch.object(settings, "ann", False)
mocker.patch("ann.ann.is_available", False) mocker.patch("ann.ann.is_available", False)
encoder = OpenClipTextualEncoder("ViT-B-32__openai", preferred_format=ModelFormat.ARMNN) encoder = OpenClipTextualEncoder("ViT-B-32__openai", model_format=ModelFormat.ARMNN)
assert encoder.model_format == ModelFormat.ARMNN assert encoder.model_format == ModelFormat.ARMNN
@ -129,7 +129,7 @@ class TestBase:
) )
def test_download_downloads_armnn_if_preferred_format(self, snapshot_download: mock.Mock) -> None: def test_download_downloads_armnn_if_preferred_format(self, snapshot_download: mock.Mock) -> None:
encoder = OpenClipTextualEncoder("ViT-B-32__openai", preferred_format=ModelFormat.ARMNN) encoder = OpenClipTextualEncoder("ViT-B-32__openai", model_format=ModelFormat.ARMNN)
encoder.download() encoder.download()
snapshot_download.assert_called_once_with( snapshot_download.assert_called_once_with(
@ -140,6 +140,19 @@ class TestBase:
ignore_patterns=[], ignore_patterns=[],
) )
def test_throws_exception_if_model_path_does_not_exist(
self, snapshot_download: mock.Mock, ort_session: mock.Mock, path: mock.Mock
) -> None:
path.return_value.__truediv__.return_value.__truediv__.return_value.is_file.return_value = False
encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=path)
with pytest.raises(FileNotFoundError):
encoder.load()
snapshot_download.assert_called_once()
ort_session.assert_not_called()
@pytest.mark.usefixtures("ort_session") @pytest.mark.usefixtures("ort_session")
class TestOrtSession: class TestOrtSession:
@ -467,16 +480,18 @@ class TestFaceRecognition:
assert isinstance(call_args[0][0], np.ndarray) assert isinstance(call_args[0][0], np.ndarray)
assert call_args[0][0].shape == (112, 112, 3) assert call_args[0][0].shape == (112, 112, 3)
def test_recognition_adds_batch_axis_for_ort(self, ort_session: mock.Mock, mocker: MockerFixture) -> None: def test_recognition_adds_batch_axis_for_ort(
self, ort_session: mock.Mock, path: mock.Mock, mocker: MockerFixture
) -> None:
onnx = mocker.patch("app.models.facial_recognition.recognition.onnx", autospec=True) onnx = mocker.patch("app.models.facial_recognition.recognition.onnx", autospec=True)
update_dims = mocker.patch( update_dims = mocker.patch(
"app.models.facial_recognition.recognition.update_inputs_outputs_dims", autospec=True "app.models.facial_recognition.recognition.update_inputs_outputs_dims", autospec=True
) )
mocker.patch("app.models.base.InferenceModel.download") mocker.patch("app.models.base.InferenceModel.download")
mocker.patch("app.models.facial_recognition.recognition.ArcFaceONNX") mocker.patch("app.models.facial_recognition.recognition.ArcFaceONNX")
ort_session.return_value.get_inputs.return_value = [SimpleNamespace(name="input.1", shape=(1, 3, 224, 224))] ort_session.return_value.get_inputs.return_value = [SimpleNamespace(name="input.1", shape=(1, 3, 224, 224))]
ort_session.return_value.get_outputs.return_value = [SimpleNamespace(name="output.1", shape=(1, 800))] ort_session.return_value.get_outputs.return_value = [SimpleNamespace(name="output.1", shape=(1, 800))]
path.return_value.__truediv__.return_value.__truediv__.return_value.suffix = ".onnx"
proto = mock.Mock() proto = mock.Mock()
@ -492,27 +507,30 @@ class TestFaceRecognition:
onnx.load.return_value = proto onnx.load.return_value = proto
face_recognizer = FaceRecognizer("buffalo_s") face_recognizer = FaceRecognizer("buffalo_s", cache_dir=path)
face_recognizer.load() face_recognizer.load()
assert face_recognizer.batch is True assert face_recognizer.batch is True
update_dims.assert_called_once_with(proto, {"input.1": ["batch", 3, 224, 224]}, {"output.1": ["batch", 800]}) update_dims.assert_called_once_with(proto, {"input.1": ["batch", 3, 224, 224]}, {"output.1": ["batch", 800]})
onnx.save.assert_called_once_with(update_dims.return_value, face_recognizer.model_path) onnx.save.assert_called_once_with(update_dims.return_value, face_recognizer.model_path)
def test_recognition_does_not_add_batch_axis_if_exists(self, ort_session: mock.Mock, mocker: MockerFixture) -> None: def test_recognition_does_not_add_batch_axis_if_exists(
self, ort_session: mock.Mock, path: mock.Mock, mocker: MockerFixture
) -> None:
onnx = mocker.patch("app.models.facial_recognition.recognition.onnx", autospec=True) onnx = mocker.patch("app.models.facial_recognition.recognition.onnx", autospec=True)
update_dims = mocker.patch( update_dims = mocker.patch(
"app.models.facial_recognition.recognition.update_inputs_outputs_dims", autospec=True "app.models.facial_recognition.recognition.update_inputs_outputs_dims", autospec=True
) )
mocker.patch("app.models.base.InferenceModel.download") mocker.patch("app.models.base.InferenceModel.download")
mocker.patch("app.models.facial_recognition.recognition.ArcFaceONNX") mocker.patch("app.models.facial_recognition.recognition.ArcFaceONNX")
path.return_value.__truediv__.return_value.__truediv__.return_value.suffix = ".onnx"
inputs = [SimpleNamespace(name="input.1", shape=("batch", 3, 224, 224))] inputs = [SimpleNamespace(name="input.1", shape=("batch", 3, 224, 224))]
outputs = [SimpleNamespace(name="output.1", shape=("batch", 800))] outputs = [SimpleNamespace(name="output.1", shape=("batch", 800))]
ort_session.return_value.get_inputs.return_value = inputs ort_session.return_value.get_inputs.return_value = inputs
ort_session.return_value.get_outputs.return_value = outputs ort_session.return_value.get_outputs.return_value = outputs
face_recognizer = FaceRecognizer("buffalo_s") face_recognizer = FaceRecognizer("buffalo_s", cache_dir=path)
face_recognizer.load() face_recognizer.load()
assert face_recognizer.batch is True assert face_recognizer.batch is True
@ -520,6 +538,30 @@ class TestFaceRecognition:
onnx.load.assert_not_called() onnx.load.assert_not_called()
onnx.save.assert_not_called() onnx.save.assert_not_called()
def test_recognition_does_not_add_batch_axis_for_armnn(
self, ann_session: mock.Mock, path: mock.Mock, mocker: MockerFixture
) -> None:
onnx = mocker.patch("app.models.facial_recognition.recognition.onnx", autospec=True)
update_dims = mocker.patch(
"app.models.facial_recognition.recognition.update_inputs_outputs_dims", autospec=True
)
mocker.patch("app.models.base.InferenceModel.download")
mocker.patch("app.models.facial_recognition.recognition.ArcFaceONNX")
path.return_value.__truediv__.return_value.__truediv__.return_value.suffix = ".armnn"
inputs = [SimpleNamespace(name="input.1", shape=("batch", 3, 224, 224))]
outputs = [SimpleNamespace(name="output.1", shape=("batch", 800))]
ann_session.return_value.get_inputs.return_value = inputs
ann_session.return_value.get_outputs.return_value = outputs
face_recognizer = FaceRecognizer("buffalo_s", model_format=ModelFormat.ARMNN, cache_dir=path)
face_recognizer.load()
assert face_recognizer.batch is False
update_dims.assert_not_called()
onnx.load.assert_not_called()
onnx.save.assert_not_called()
@pytest.mark.asyncio @pytest.mark.asyncio
class TestCache: class TestCache:
@ -693,7 +735,7 @@ class TestLoad:
mock_model.clear_cache.assert_called_once() mock_model.clear_cache.assert_called_once()
assert mock_model.load.call_count == 2 assert mock_model.load.call_count == 2
async def test_load_clears_cache_and_raises_if_os_error_and_already_retried(self) -> None: async def test_load_raises_if_os_error_and_already_retried(self) -> None:
mock_model = mock.Mock(spec=InferenceModel) mock_model = mock.Mock(spec=InferenceModel)
mock_model.model_name = "test_model_name" mock_model.model_name = "test_model_name"
mock_model.model_type = ModelType.VISUAL mock_model.model_type = ModelType.VISUAL
@ -707,6 +749,27 @@ class TestLoad:
mock_model.clear_cache.assert_not_called() mock_model.clear_cache.assert_not_called()
mock_model.load.assert_not_called() mock_model.load.assert_not_called()
async def test_falls_back_to_onnx_if_other_format_does_not_exist(
self, exception: mock.Mock, warning: mock.Mock
) -> None:
mock_model = mock.Mock(spec=InferenceModel)
mock_model.model_name = "test_model_name"
mock_model.model_type = ModelType.VISUAL
mock_model.model_task = ModelTask.SEARCH
mock_model.model_format = ModelFormat.ARMNN
mock_model.loaded = False
mock_model.load_attempts = 0
error = FileNotFoundError()
mock_model.load.side_effect = [error, None]
await load(mock_model)
mock_model.clear_cache.assert_not_called()
assert mock_model.load.call_count == 2
exception.assert_called_once_with(error)
warning.assert_called_once_with("ARMNN is available, but model 'test_model_name' does not support it.")
mock_model.model_format = ModelFormat.ONNX
@pytest.mark.skipif( @pytest.mark.skipif(
not settings.test_full, not settings.test_full,