0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-21 00:52:43 -05:00

feat(server): turn off machine learning endpoint (#1361)

This commit is contained in:
Jason Rasmussen 2023-01-20 11:35:55 -05:00 committed by GitHub
parent a8cbda5f24
commit bdad18a572
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
5 changed files with 25 additions and 12 deletions

View file

@ -9,6 +9,7 @@ import { GetJobDto, JobId } from './dto/get-job.dto';
import { JobStatusResponseDto } from './response-dto/job-status-response.dto';
import { IMachineLearningJob } from '@app/job/interfaces/machine-learning.interface';
import { StorageService } from '@app/storage';
import { MACHINE_LEARNING_ENABLED } from '@app/common';
@Injectable()
export class JobService {
@ -161,6 +162,10 @@ export class JobService {
}
private async runMachineLearningPipeline(): Promise<number> {
if (!MACHINE_LEARNING_ENABLED) {
throw new BadRequestException('Machine learning is not enabled.');
}
const jobCount = await this.machineLearningQueue.getJobCounts();
if (jobCount.waiting > 0) {

View file

@ -10,7 +10,7 @@ import { SERVER_VERSION } from './constants/server_version.constant';
import { RedisIoAdapter } from './middlewares/redis-io.adapter.middleware';
import { json } from 'body-parser';
import { patchOpenAPI } from './utils/patch-open-api.util';
import { getLogLevels } from '@app/common';
import { getLogLevels, MACHINE_LEARNING_ENABLED } from '@app/common';
const logger = new Logger('ImmichServer');
@ -69,5 +69,7 @@ async function bootstrap() {
const envName = (process.env.NODE_ENV || 'development').toUpperCase();
logger.log(`Running Immich Server in ${envName} environment - version ${SERVER_VERSION}`);
});
logger.warn(`Machine learning is ${MACHINE_LEARNING_ENABLED ? 'enabled' : 'disabled'}`);
}
bootstrap();

View file

@ -8,8 +8,7 @@ import { InjectRepository } from '@nestjs/typeorm';
import axios from 'axios';
import { Job } from 'bull';
import { Repository } from 'typeorm';
const immich_machine_learning_url = process.env.IMMICH_MACHINE_LEARNING_URL || 'http://immich-machine-learning:3003';
import { MACHINE_LEARNING_ENABLED, MACHINE_LEARNING_URL } from '@app/common';
@Processor(QueueName.MACHINE_LEARNING)
export class MachineLearningProcessor {
@ -20,9 +19,13 @@ export class MachineLearningProcessor {
@Process({ name: JobName.IMAGE_TAGGING, concurrency: 2 })
async tagImage(job: Job<IMachineLearningJob>) {
if (!MACHINE_LEARNING_ENABLED) {
return;
}
const { asset } = job.data;
const res = await axios.post(immich_machine_learning_url + '/image-classifier/tag-image', {
const res = await axios.post(MACHINE_LEARNING_URL + '/image-classifier/tag-image', {
thumbnailPath: asset.resizePath,
});
@ -39,10 +42,14 @@ export class MachineLearningProcessor {
@Process({ name: JobName.OBJECT_DETECTION, concurrency: 2 })
async detectObject(job: Job<IMachineLearningJob>) {
if (!MACHINE_LEARNING_ENABLED) {
return;
}
try {
const { asset }: { asset: AssetEntity } = job.data;
const res = await axios.post(immich_machine_learning_url + '/object-detection/detect-object', {
const res = await axios.post(MACHINE_LEARNING_URL + '/object-detection/detect-object', {
thumbnailPath: asset.resizePath,
});

View file

@ -1 +1,4 @@
export * from './upload_location.constant';
export const MACHINE_LEARNING_URL = process.env.IMMICH_MACHINE_LEARNING_URL || 'http://immich-machine-learning:3003';
export const MACHINE_LEARNING_ENABLED = MACHINE_LEARNING_URL !== 'false';

View file

@ -3,6 +3,7 @@
notificationController,
NotificationType
} from '$lib/components/shared-components/notification/notification';
import { handleError } from '$lib/utils/handle-error';
import { AllJobStatusResponseDto, api, JobCommand, JobId } from '@api';
import { onDestroy, onMount } from 'svelte';
import JobTile from './job-tile.svelte';
@ -95,13 +96,8 @@
type: NotificationType.Info
});
}
} catch (e) {
console.log('[ERROR] runMachineLearning', e);
notificationController.show({
message: `Error running machine learning job, check console for more detail`,
type: NotificationType.Error
});
} catch (error) {
handleError(error, `Error running machine learning job, check console for more detail`);
}
};