0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2024-12-31 00:43:56 -05:00

feat(ml): improved ARM-NN support (#11233)

This commit is contained in:
Fynn Petersen-Frey 2024-07-20 21:59:27 +02:00 committed by GitHub
parent 7c3326b662
commit 54488b1016
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
8 changed files with 70 additions and 32 deletions

View file

@ -32,6 +32,7 @@ You do not need to redo any machine learning jobs after enabling hardware accele
- Where and how you can get this file depends on device and vendor, but typically, the device vendor also supplies these
- The `hwaccel.ml.yml` file assumes the path to it is `/usr/lib/libmali.so`, so update accordingly if it is elsewhere
- The `hwaccel.ml.yml` file assumes an additional file `/lib/firmware/mali_csffw.bin`, so update accordingly if your device's driver does not require this file
- Optional: Configure your `.env` file, see [environment variables](/docs/install/environment-variables) for ARM NN specific settings
#### CUDA

View file

@ -156,18 +156,21 @@ Redis (Sentinel) URL example JSON before encoding:
## Machine Learning
| Variable | Description | Default | Containers |
| :----------------------------------------------- | :------------------------------------------------------------------- | :-----------------------------------: | :--------------- |
| `MACHINE_LEARNING_MODEL_TTL` | Inactivity time (s) before a model is unloaded (disabled if \<= 0) | `300` | machine learning |
| `MACHINE_LEARNING_MODEL_TTL_POLL_S` | Interval (s) between checks for the model TTL (disabled if \<= 0) | `10` | machine learning |
| `MACHINE_LEARNING_CACHE_FOLDER` | Directory where models are downloaded | `/cache` | machine learning |
| `MACHINE_LEARNING_REQUEST_THREADS`<sup>\*1</sup> | Thread count of the request thread pool (disabled if \<= 0) | number of CPU cores | machine learning |
| `MACHINE_LEARNING_MODEL_INTER_OP_THREADS` | Number of parallel model operations | `1` | machine learning |
| `MACHINE_LEARNING_MODEL_INTRA_OP_THREADS` | Number of threads for each model operation | `2` | machine learning |
| `MACHINE_LEARNING_WORKERS`<sup>\*2</sup> | Number of worker processes to spawn | `1` | machine learning |
| `MACHINE_LEARNING_WORKER_TIMEOUT` | Maximum time (s) of unresponsiveness before a worker is killed | `120` (`300` if using OpenVINO image) | machine learning |
| `MACHINE_LEARNING_PRELOAD__CLIP` | Name of a CLIP model to be preloaded and kept in cache | | machine learning |
| `MACHINE_LEARNING_PRELOAD__FACIAL_RECOGNITION` | Name of a facial recognition model to be preloaded and kept in cache | | machine learning |
| Variable | Description | Default | Containers |
| :----------------------------------------------- | :-------------------------------------------------------------------------------------------------- | :-----------------------------------: | :--------------- |
| `MACHINE_LEARNING_MODEL_TTL` | Inactivity time (s) before a model is unloaded (disabled if \<= 0) | `300` | machine learning |
| `MACHINE_LEARNING_MODEL_TTL_POLL_S` | Interval (s) between checks for the model TTL (disabled if \<= 0) | `10` | machine learning |
| `MACHINE_LEARNING_CACHE_FOLDER` | Directory where models are downloaded | `/cache` | machine learning |
| `MACHINE_LEARNING_REQUEST_THREADS`<sup>\*1</sup> | Thread count of the request thread pool (disabled if \<= 0) | number of CPU cores | machine learning |
| `MACHINE_LEARNING_MODEL_INTER_OP_THREADS` | Number of parallel model operations | `1` | machine learning |
| `MACHINE_LEARNING_MODEL_INTRA_OP_THREADS` | Number of threads for each model operation | `2` | machine learning |
| `MACHINE_LEARNING_WORKERS`<sup>\*2</sup> | Number of worker processes to spawn | `1` | machine learning |
| `MACHINE_LEARNING_WORKER_TIMEOUT` | Maximum time (s) of unresponsiveness before a worker is killed | `120` (`300` if using OpenVINO image) | machine learning |
| `MACHINE_LEARNING_PRELOAD__CLIP` | Name of a CLIP model to be preloaded and kept in cache | | machine learning |
| `MACHINE_LEARNING_PRELOAD__FACIAL_RECOGNITION` | Name of a facial recognition model to be preloaded and kept in cache | | machine learning |
| `MACHINE_LEARNING_ANN` | Enable ARM-NN hardware acceleration if supported | `True` | machine learning |
| `MACHINE_LEARNING_ANN_FP16_TURBO` | Execute operations in FP16 precision: increasing speed, reducing precision (applies only to ARM-NN) | `False` | machine learning |
| `MACHINE_LEARNING_ANN_TUNING_LEVEL` | ARM-NN GPU tuning level (1: rapid, 2: normal, 3: exhaustive) | `2` | machine learning |
\*1: It is recommended to begin with this parameter when changing the concurrency levels of the machine learning service and then tune the other ones.

View file

@ -13,7 +13,7 @@ FROM builder-cpu as builder-armnn
ENV ARMNN_PATH=/opt/armnn
COPY ann /opt/ann
RUN mkdir /opt/armnn && \
curl -SL "https://github.com/ARM-software/armnn/releases/download/v23.11/ArmNN-linux-aarch64.tar.gz" | tar -zx -C /opt/armnn && \
curl -SL "https://github.com/ARM-software/armnn/releases/download/v24.05/ArmNN-linux-aarch64.tar.gz" | tar -zx -C /opt/armnn && \
cd /opt/ann && \
sh build.sh
@ -54,7 +54,7 @@ FROM prod-cpu as prod-armnn
ENV LD_LIBRARY_PATH=/opt/armnn
RUN apt-get update && apt-get install -y --no-install-recommends ocl-icd-libopencl1 mesa-opencl-icd && \
RUN apt-get update && apt-get install -y --no-install-recommends ocl-icd-libopencl1 mesa-opencl-icd libgomp1 && \
rm -rf /var/lib/apt/lists/* && \
mkdir --parents /etc/OpenCL/vendors && \
echo "/usr/lib/libmali.so" > /etc/OpenCL/vendors/mali.icd && \

View file

@ -48,21 +48,22 @@ public:
bool saveCachedNetwork,
const char *cachedNetworkPath)
{
INetworkPtr network = loadModel(modelPath);
IOptimizedNetworkPtr optNet = OptimizeNetwork(network.get(), fastMath, fp16, saveCachedNetwork, cachedNetworkPath);
const IOInfos infos = getIOInfos(optNet.get());
NetworkId netId;
mutex.lock();
Status status = runtime->LoadNetwork(netId, std::move(optNet));
mutex.unlock();
if (status != Status::Success)
NetworkId netId = -2;
while (netId == -2)
{
return -1;
try
{
netId = loadInternal(modelPath, fastMath, fp16, saveCachedNetwork, cachedNetworkPath);
}
catch (InvalidArgumentException e)
{
// fp16 models do not support the forced fp16-turbo (runtime fp32->fp16 conversion)
if (fp16)
fp16 = false;
else
netId = -1;
}
}
spinLock.lock();
ioInfos[netId] = infos;
mutexes.emplace(netId, std::make_unique<std::mutex>());
spinLock.unlock();
return netId;
}
@ -117,6 +118,8 @@ public:
Ann(int tuningLevel, const char *tuningFile)
{
IRuntime::CreationOptions runtimeOptions;
runtimeOptions.m_ProfilingOptions.m_EnableProfiling = false;
runtimeOptions.m_ProfilingOptions.m_TimelineEnabled = false;
BackendOptions backendOptions{"GpuAcc",
{
{"TuningLevel", tuningLevel},
@ -133,6 +136,30 @@ public:
};
private:
int loadInternal(const char *modelPath,
bool fastMath,
bool fp16,
bool saveCachedNetwork,
const char *cachedNetworkPath)
{
NetworkId netId = -1;
INetworkPtr network = loadModel(modelPath);
IOptimizedNetworkPtr optNet = OptimizeNetwork(network.get(), fastMath, fp16, saveCachedNetwork, cachedNetworkPath);
const IOInfos infos = getIOInfos(optNet.get());
mutex.lock();
Status status = runtime->LoadNetwork(netId, std::move(optNet));
mutex.unlock();
if (status != Status::Success)
{
return -1;
}
spinLock.lock();
ioInfos[netId] = infos;
mutexes.emplace(netId, std::make_unique<std::mutex>());
spinLock.unlock();
return netId;
}
INetworkPtr loadModel(const char *modelPath)
{
const auto path = std::string(modelPath);
@ -172,6 +199,8 @@ private:
options.SetReduceFp32ToFp16(fp16);
options.SetShapeInferenceMethod(shapeInferenceMethod);
options.SetAllowExpandedDims(allowExpandedDims);
options.SetDebugToFileEnabled(false);
options.SetProfilingEnabled(false);
BackendOptions gpuAcc("GpuAcc", {{"FastMathEnabled", fastMath}});
if (cachedNetworkPath)
@ -232,8 +261,8 @@ private:
IRuntime *runtime;
std::map<NetworkId, IOInfos> ioInfos;
std::map<NetworkId, std::unique_ptr<std::mutex>> mutexes; // mutex per network to not execute the same the same network concurrently
std::mutex mutex; // global mutex for load/unload calls to the runtime
SpinLock spinLock; // fast spin lock to guard access to the ioInfos and mutexes maps
std::mutex mutex; // global mutex for load/unload calls to the runtime
SpinLock spinLock; // fast spin lock to guard access to the ioInfos and mutexes maps
};
extern "C" void *init(int logLevel, int tuningLevel, const char *tuningFile)

View file

@ -120,6 +120,8 @@ class Ann(metaclass=_Singleton):
save_cached_network,
cached_network_path.encode() if cached_network_path is not None else None,
)
if net_id < 0:
raise ValueError("Cannot load model!")
self.input_shapes[net_id] = tuple(
self.shape(net_id, input=True, index=i) for i in range(self.tensors(net_id, input=True))

View file

@ -30,6 +30,8 @@ class Settings(BaseSettings):
model_inter_op_threads: int = 0
model_intra_op_threads: int = 0
ann: bool = True
ann_fp16_turbo: bool = False
ann_tuning_level: int = 2
preload: PreloadModelData | None = None
class Config:

View file

@ -20,12 +20,13 @@ class AnnSession:
def __init__(self, model_path: Path, cache_dir: Path = settings.cache_folder) -> None:
self.model_path = model_path
self.cache_dir = cache_dir
self.ann = Ann(tuning_level=3, tuning_file=(cache_dir / "gpu-tuning.ann").as_posix())
self.ann = Ann(tuning_level=settings.ann_tuning_level, tuning_file=(cache_dir / "gpu-tuning.ann").as_posix())
log.info("Loading ANN model %s ...", model_path)
self.model = self.ann.load(
model_path.as_posix(),
cached_network_path=model_path.with_suffix(".anncache").as_posix(),
fp16=settings.ann_fp16_turbo,
)
log.info("Loaded ANN model with ID %d", self.model)

View file

@ -268,9 +268,9 @@ class TestAnnSession:
AnnSession(model_path, cache_dir)
ann_session.assert_called_once_with(tuning_level=3, tuning_file=(cache_dir / "gpu-tuning.ann").as_posix())
ann_session.assert_called_once_with(tuning_level=2, tuning_file=(cache_dir / "gpu-tuning.ann").as_posix())
ann_session.return_value.load.assert_called_once_with(
model_path.as_posix(), cached_network_path=model_path.with_suffix(".anncache").as_posix()
model_path.as_posix(), cached_network_path=model_path.with_suffix(".anncache").as_posix(), fp16=False
)
info.assert_has_calls(
[