0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-21 00:52:43 -05:00

handle gather at the end

This commit is contained in:
mertalev 2024-07-07 19:24:51 -04:00
parent 1ad348c407
commit 3d62011ae3
No known key found for this signature in database
GPG key ID: 9181CD92C0A1C5E3

View file

@ -10,19 +10,19 @@ from huggingface_hub import snapshot_download
from onnx.shape_inference import infer_shapes_path
from huggingface_hub import login, upload_file
import onnx2tf
from itertools import chain
import numpy as np
import onnxsim
# i can explain
# armnn only supports up to 4d tranposes, but the model has a 5d transpose due to a redundant unsqueeze
# this function folds the unsqueeze+transpose+squeeze into a single 4d transpose
# it also switches from gather ops to slices since armnn doesn't support 3d gather
# it also switches from gather ops to slices since armnn has different dimension semantics for gathers
def onnx_transpose_4d(model_path: str):
proto = onnx.load(model_path)
graph = import_onnx(proto)
gather_idx = 1
squeeze_idx = 1
for node in graph.nodes:
for link1 in node.outputs:
if "Unsqueeze" in link1.name:
@ -48,6 +48,7 @@ def onnx_transpose_4d(model_path: str):
node.outputs = [link2]
if "Gather" in link4.name:
for node4 in link4.outputs:
axis = node1.attrs.get("axis", 0)
index = node4.inputs[1].values
slice_link = Variable(
f"onnx::Slice_123{gather_idx}",
@ -60,11 +61,15 @@ def onnx_transpose_4d(model_path: str):
link3,
Constant(
f"SliceStart_123{gather_idx}",
np.array([index, 0, 0, 0]),
np.array([index]),
),
Constant(
f"SliceEnd_123{gather_idx}",
np.array([index + 1] + link3.shape[1:]),
np.array([index + 1]),
),
Constant(
f"SliceAxis_123{gather_idx}",
np.array([axis]),
),
],
outputs=[slice_link],
@ -80,6 +85,59 @@ def onnx_transpose_4d(model_path: str):
node5.inputs[idx] = slice_link
except ValueError:
pass
elif node.op == "LayerNormalization":
for node1 in link1.outputs:
if node1.op == "Gather":
for link2 in node1.outputs:
for node2 in link2.outputs:
axis = node1.attrs.get("axis", 0)
index = node1.inputs[1].values
slice_link = Variable(
f"onnx::Slice_123{gather_idx}",
dtype=link2.dtype,
shape=[1] + link2.shape,
)
slice_node = Node(
op="Slice",
inputs=[
node1.inputs[0],
Constant(
f"SliceStart_123{gather_idx}",
np.array([index]),
),
Constant(
f"SliceEnd_123{gather_idx}",
np.array([index + 1]),
),
Constant(
f"SliceAxis_123{gather_idx}",
np.array([axis]),
),
],
outputs=[slice_link],
name=f"Slice_123{gather_idx}",
)
graph.nodes.append(slice_node)
gather_idx += 1
squeeze_link = Variable(
f"onnx::Squeeze_123{squeeze_idx}",
dtype=link2.dtype,
shape=link2.shape,
)
squeeze_node = Node(
op="Squeeze",
inputs=[slice_link, Constant(f"SqueezeAxis_123{squeeze_idx}",np.array([0]),)],
outputs=[squeeze_link],
name=f"Squeeze_123{squeeze_idx}",
)
graph.nodes.append(squeeze_node)
squeeze_idx += 1
try:
idx = node2.inputs.index(link2)
node2.inputs[idx] = squeeze_link
except ValueError:
pass
graph.cleanup(remove_unused_node_outputs=True, recurse_subgraphs=True, recurse_functions=True)
graph.toposort()
@ -149,6 +207,7 @@ class ExportBase:
os.makedirs(static_dir, exist_ok=True)
static_path = os.path.join(static_dir, "model.onnx")
if not os.path.isfile(static_path):
print(f"Making {self.model_name} ({self.task}) static")
onnx_make_fixed(onnx_path_original, static_path, self.input_shape)
onnx_transpose_4d(static_path)
@ -181,50 +240,28 @@ class ExportBase:
armnn_fp32 = os.path.join(output_dir, "model.armnn")
armnn_fp16 = os.path.join(fp16_dir, "model.armnn")
input_tensors = list(chain.from_iterable(("-i", input_) for input_ in self.inputs)),
output_tensors = list(chain.from_iterable(("-o", output_) for output_ in self.outputs)),
print(f"{input_tensors=}")
print(f"{output_tensors=}")
args = [
"./armnnconverter",
"-f",
"tflite-binary",
"-m",
tflite_fp32,
"-p",
armnn_fp32,
]
for input_ in self.inputs:
args.extend(["-i", input_])
for output_ in self.outputs:
args.extend(["-o", output_])
fp32_args = args.copy()
fp32_args.extend(["-m", tflite_fp32, "-p", tflite_fp32])
print(f"Exporting {self.model_name} ({self.task}) to ARM NN with fp32 precision")
subprocess.run(
args,
capture_output=True,
)
subprocess.run(fp32_args, capture_output=True)
print(f"Finished exporting {self.name} ({self.task}) with fp32 precision")
args = [
"./armnnconverter",
"-f",
"tflite-binary",
"-m",
tflite_fp16,
"-p",
armnn_fp16,
]
for input_ in self.inputs:
args.extend(["-i", input_])
for output_ in self.outputs:
args.extend(["-o", output_])
fp16_args = args.copy()
fp32_args.extend(["-m", tflite_fp16, "-p", tflite_fp16])
print(f"Exporting {self.model_name} ({self.task}) to ARM NN with fp16 precision")
subprocess.run(
args,
capture_output=True,
)
subprocess.run(fp16_args, capture_output=True)
print(f"Finished exporting {self.name} ({self.task}) with fp16 precision")
return armnn_fp32, armnn_fp16