2023-08-29 09:58:00 -04:00
|
|
|
from io import BytesIO
|
2023-06-24 23:18:09 -04:00
|
|
|
from pathlib import Path
|
2023-06-27 17:01:24 -04:00
|
|
|
from typing import Any
|
2023-06-24 23:18:09 -04:00
|
|
|
|
2023-08-05 22:45:13 -04:00
|
|
|
from huggingface_hub import snapshot_download
|
2023-08-25 00:28:51 -04:00
|
|
|
from optimum.onnxruntime import ORTModelForImageClassification
|
|
|
|
from optimum.pipelines import pipeline
|
2023-08-29 09:58:00 -04:00
|
|
|
from PIL import Image
|
2023-08-25 00:28:51 -04:00
|
|
|
from transformers import AutoImageProcessor
|
2023-06-24 23:18:09 -04:00
|
|
|
|
|
|
|
from ..schemas import ModelType
|
|
|
|
from .base import InferenceModel
|
|
|
|
|
|
|
|
|
|
|
|
class ImageClassifier(InferenceModel):
|
|
|
|
_model_type = ModelType.IMAGE_CLASSIFICATION
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
model_name: str,
|
2023-08-29 09:58:00 -04:00
|
|
|
min_score: float = 0.9,
|
2023-06-27 19:21:33 -04:00
|
|
|
cache_dir: Path | str | None = None,
|
|
|
|
**model_kwargs: Any,
|
2023-06-27 17:01:24 -04:00
|
|
|
) -> None:
|
2023-08-30 04:16:00 -04:00
|
|
|
self.min_score = model_kwargs.pop("minScore", min_score)
|
2023-06-27 17:01:24 -04:00
|
|
|
super().__init__(model_name, cache_dir, **model_kwargs)
|
2023-06-24 23:18:09 -04:00
|
|
|
|
2023-08-05 22:45:13 -04:00
|
|
|
def _download(self, **model_kwargs: Any) -> None:
|
|
|
|
snapshot_download(
|
2023-08-25 00:28:51 -04:00
|
|
|
cache_dir=self.cache_dir,
|
|
|
|
repo_id=self.model_name,
|
|
|
|
allow_patterns=["*.bin", "*.json", "*.txt"],
|
|
|
|
local_dir=self.cache_dir,
|
|
|
|
local_dir_use_symlinks=True,
|
2023-08-05 22:45:13 -04:00
|
|
|
)
|
|
|
|
|
|
|
|
def _load(self, **model_kwargs: Any) -> None:
|
2023-08-25 00:28:51 -04:00
|
|
|
processor = AutoImageProcessor.from_pretrained(self.cache_dir)
|
|
|
|
model_kwargs |= {
|
|
|
|
"cache_dir": self.cache_dir,
|
|
|
|
"provider": self.providers[0],
|
|
|
|
"provider_options": self.provider_options[0],
|
|
|
|
"session_options": self.sess_options,
|
|
|
|
}
|
|
|
|
model_path = self.cache_dir / "model.onnx"
|
|
|
|
|
|
|
|
if model_path.exists():
|
|
|
|
model = ORTModelForImageClassification.from_pretrained(self.cache_dir, **model_kwargs)
|
|
|
|
self.model = pipeline(self.model_type.value, model, feature_extractor=processor)
|
|
|
|
else:
|
|
|
|
self.sess_options.optimized_model_filepath = model_path.as_posix()
|
|
|
|
self.model = pipeline(
|
|
|
|
self.model_type.value,
|
|
|
|
self.model_name,
|
|
|
|
model_kwargs=model_kwargs,
|
|
|
|
feature_extractor=processor,
|
|
|
|
)
|
2023-06-24 23:18:09 -04:00
|
|
|
|
2023-08-29 09:58:00 -04:00
|
|
|
def _predict(self, image: Image.Image | bytes) -> list[str]:
|
|
|
|
if isinstance(image, bytes):
|
|
|
|
image = Image.open(BytesIO(image))
|
2023-06-27 19:21:33 -04:00
|
|
|
predictions: list[dict[str, Any]] = self.model(image) # type: ignore
|
|
|
|
tags = [tag for pred in predictions for tag in pred["label"].split(", ") if pred["score"] >= self.min_score]
|
|
|
|
|
2023-06-24 23:18:09 -04:00
|
|
|
return tags
|
2023-08-29 09:58:00 -04:00
|
|
|
|
|
|
|
def configure(self, **model_kwargs: Any) -> None:
|
2023-08-30 04:16:00 -04:00
|
|
|
self.min_score = model_kwargs.pop("minScore", self.min_score)
|