0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-21 00:52:43 -05:00
immich/machine-learning/app/models/clip.py

223 lines
6.8 KiB
Python
Raw Normal View History

import json
from abc import abstractmethod
from functools import cached_property
from io import BytesIO
from pathlib import Path
from typing import Any, Literal
import numpy as np
import onnxruntime as ort
from huggingface_hub import snapshot_download
from PIL import Image
from transformers import AutoTokenizer
from app.config import log
from app.models.transforms import crop, get_pil_resampling, normalize, resize, to_numpy
from app.schemas import ModelType, ndarray_f32, ndarray_i32, ndarray_i64
from .base import InferenceModel
class BaseCLIPEncoder(InferenceModel):
_model_type = ModelType.CLIP
def __init__(
self,
model_name: str,
cache_dir: str | None = None,
mode: Literal["text", "vision"] | None = None,
**model_kwargs: Any,
) -> None:
self.mode = mode
super().__init__(model_name, cache_dir, **model_kwargs)
def _load(self) -> None:
if self.mode == "text" or self.mode is None:
log.debug(f"Loading clip text model '{self.model_name}'")
self.text_model = ort.InferenceSession(
self.textual_path.as_posix(),
sess_options=self.sess_options,
providers=self.providers,
provider_options=self.provider_options,
)
if self.mode == "vision" or self.mode is None:
log.debug(f"Loading clip vision model '{self.model_name}'")
self.vision_model = ort.InferenceSession(
self.visual_path.as_posix(),
sess_options=self.sess_options,
providers=self.providers,
provider_options=self.provider_options,
)
def _predict(self, image_or_text: Image.Image | str) -> list[float]:
if isinstance(image_or_text, bytes):
image_or_text = Image.open(BytesIO(image_or_text))
match image_or_text:
case Image.Image():
if self.mode == "text":
raise TypeError("Cannot encode image as text-only model")
outputs = self.vision_model.run(None, self.transform(image_or_text))
case str():
if self.mode == "vision":
raise TypeError("Cannot encode text as vision-only model")
outputs = self.text_model.run(None, self.tokenize(image_or_text))
case _:
raise TypeError(f"Expected Image or str, but got: {type(image_or_text)}")
return outputs[0][0].tolist()
@abstractmethod
def tokenize(self, text: str) -> dict[str, ndarray_i32]:
pass
@abstractmethod
def transform(self, image: Image.Image) -> dict[str, ndarray_f32]:
pass
@property
def textual_dir(self) -> Path:
return self.cache_dir / "textual"
@property
def visual_dir(self) -> Path:
return self.cache_dir / "visual"
@property
def model_cfg_path(self) -> Path:
return self.cache_dir / "config.json"
@property
def textual_path(self) -> Path:
return self.textual_dir / "model.onnx"
@property
def visual_path(self) -> Path:
return self.visual_dir / "model.onnx"
@property
def preprocess_cfg_path(self) -> Path:
return self.visual_dir / "preprocess_cfg.json"
@property
def cached(self) -> bool:
return self.textual_path.is_file() and self.visual_path.is_file()
class OpenCLIPEncoder(BaseCLIPEncoder):
def __init__(
self,
model_name: str,
cache_dir: str | None = None,
mode: Literal["text", "vision"] | None = None,
**model_kwargs: Any,
) -> None:
super().__init__(_clean_model_name(model_name), cache_dir, mode, **model_kwargs)
def _download(self) -> None:
snapshot_download(
f"immich-app/{self.model_name}",
cache_dir=self.cache_dir,
local_dir=self.cache_dir,
local_dir_use_symlinks=False,
)
def _load(self) -> None:
super()._load()
self.tokenizer = AutoTokenizer.from_pretrained(self.textual_dir)
self.sequence_length = self.model_cfg["text_cfg"]["context_length"]
self.size = (
self.preprocess_cfg["size"][0] if type(self.preprocess_cfg["size"]) == list else self.preprocess_cfg["size"]
)
self.resampling = get_pil_resampling(self.preprocess_cfg["interpolation"])
self.mean = np.array(self.preprocess_cfg["mean"], dtype=np.float32)
self.std = np.array(self.preprocess_cfg["std"], dtype=np.float32)
def tokenize(self, text: str) -> dict[str, ndarray_i32]:
input_ids: ndarray_i64 = self.tokenizer(
text,
max_length=self.sequence_length,
return_tensors="np",
return_attention_mask=False,
padding="max_length",
truncation=True,
).input_ids
return {"text": input_ids.astype(np.int32)}
def transform(self, image: Image.Image) -> dict[str, ndarray_f32]:
image = resize(image, self.size)
image = crop(image, self.size)
image_np = to_numpy(image)
image_np = normalize(image_np, self.mean, self.std)
return {"image": np.expand_dims(image_np.transpose(2, 0, 1), 0)}
@cached_property
def model_cfg(self) -> dict[str, Any]:
return json.load(self.model_cfg_path.open())
@cached_property
def preprocess_cfg(self) -> dict[str, Any]:
return json.load(self.preprocess_cfg_path.open())
class MCLIPEncoder(OpenCLIPEncoder):
def tokenize(self, text: str) -> dict[str, ndarray_i32]:
tokens: dict[str, ndarray_i64] = self.tokenizer(text, return_tensors="np")
return {k: v.astype(np.int32) for k, v in tokens.items()}
_OPENCLIP_MODELS = {
"RN50__openai",
"RN50__yfcc15m",
"RN50__cc12m",
"RN101__openai",
"RN101__yfcc15m",
"RN50x4__openai",
"RN50x16__openai",
"RN50x64__openai",
"ViT-B-32__openai",
"ViT-B-32__laion2b_e16",
"ViT-B-32__laion400m_e31",
"ViT-B-32__laion400m_e32",
"ViT-B-32__laion2b-s34b-b79k",
"ViT-B-16__openai",
"ViT-B-16__laion400m_e31",
"ViT-B-16__laion400m_e32",
"ViT-B-16-plus-240__laion400m_e31",
"ViT-B-16-plus-240__laion400m_e32",
"ViT-L-14__openai",
"ViT-L-14__laion400m_e31",
"ViT-L-14__laion400m_e32",
"ViT-L-14__laion2b-s32b-b82k",
"ViT-L-14-336__openai",
"ViT-H-14__laion2b-s32b-b79k",
"ViT-g-14__laion2b-s12b-b42k",
}
_MCLIP_MODELS = {
"LABSE-Vit-L-14",
"XLM-Roberta-Large-Vit-B-32",
"XLM-Roberta-Large-Vit-B-16Plus",
"XLM-Roberta-Large-Vit-L-14",
}
def _clean_model_name(model_name: str) -> str:
return model_name.split("/")[-1].replace("::", "__")
def is_openclip(model_name: str) -> bool:
return _clean_model_name(model_name) in _OPENCLIP_MODELS
def is_mclip(model_name: str) -> bool:
return _clean_model_name(model_name) in _MCLIP_MODELS