mirror of
https://github.com/immich-app/immich.git
synced 2025-01-07 00:50:23 -05:00
69 lines
2.1 KiB
Python
69 lines
2.1 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
from pathlib import Path
|
||
|
from typing import Any, NamedTuple
|
||
|
|
||
|
from numpy import ascontiguousarray
|
||
|
|
||
|
from ann.ann import Ann
|
||
|
from app.schemas import ndarray_f32, ndarray_i32
|
||
|
|
||
|
from ..config import log, settings
|
||
|
|
||
|
|
||
|
class AnnSession:
|
||
|
"""
|
||
|
Wrapper for ANN to be drop-in replacement for ONNX session.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, model_path: Path):
|
||
|
tuning_file = Path(settings.cache_folder) / "gpu-tuning.ann"
|
||
|
with tuning_file.open(mode="a"):
|
||
|
# make sure tuning file exists (without clearing contents)
|
||
|
# once filled, the tuning file reduces the cost/time of the first
|
||
|
# inference after model load by 10s of seconds
|
||
|
pass
|
||
|
self.ann = Ann(tuning_level=3, tuning_file=tuning_file.as_posix())
|
||
|
log.info("Loading ANN model %s ...", model_path)
|
||
|
cache_file = model_path.with_suffix(".anncache")
|
||
|
save = False
|
||
|
if not cache_file.is_file():
|
||
|
save = True
|
||
|
with cache_file.open(mode="a"):
|
||
|
# create empty model cache file
|
||
|
pass
|
||
|
|
||
|
self.model = self.ann.load(
|
||
|
model_path.as_posix(),
|
||
|
save_cached_network=save,
|
||
|
cached_network_path=cache_file.as_posix(),
|
||
|
)
|
||
|
log.info("Loaded ANN model with ID %d", self.model)
|
||
|
|
||
|
def __del__(self) -> None:
|
||
|
self.ann.unload(self.model)
|
||
|
log.info("Unloaded ANN model %d", self.model)
|
||
|
self.ann.destroy()
|
||
|
|
||
|
def get_inputs(self) -> list[AnnNode]:
|
||
|
shapes = self.ann.input_shapes[self.model]
|
||
|
return [AnnNode(None, s) for s in shapes]
|
||
|
|
||
|
def get_outputs(self) -> list[AnnNode]:
|
||
|
shapes = self.ann.output_shapes[self.model]
|
||
|
return [AnnNode(None, s) for s in shapes]
|
||
|
|
||
|
def run(
|
||
|
self,
|
||
|
output_names: list[str] | None,
|
||
|
input_feed: dict[str, ndarray_f32] | dict[str, ndarray_i32],
|
||
|
run_options: Any = None,
|
||
|
) -> list[ndarray_f32]:
|
||
|
inputs: list[ndarray_f32] = [ascontiguousarray(v) for v in input_feed.values()]
|
||
|
return self.ann.execute(self.model, inputs)
|
||
|
|
||
|
|
||
|
class AnnNode(NamedTuple):
|
||
|
name: str | None
|
||
|
shape: tuple[int, ...]
|