mirror of
https://github.com/immich-app/immich.git
synced 2025-02-11 01:18:24 -05:00
41 lines
1 KiB
Python
41 lines
1 KiB
Python
|
from pathlib import Path
|
||
|
|
||
|
from PIL.Image import Image
|
||
|
from transformers.pipelines import pipeline
|
||
|
|
||
|
from ..config import settings
|
||
|
from ..schemas import ModelType
|
||
|
from .base import InferenceModel
|
||
|
|
||
|
|
||
|
class ImageClassifier(InferenceModel):
|
||
|
_model_type = ModelType.IMAGE_CLASSIFICATION
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
model_name: str,
|
||
|
min_score: float = settings.min_tag_score,
|
||
|
cache_dir: Path | None = None,
|
||
|
**model_kwargs,
|
||
|
):
|
||
|
super().__init__(model_name, cache_dir)
|
||
|
self.min_score = min_score
|
||
|
|
||
|
self.model = pipeline(
|
||
|
self.model_type.value,
|
||
|
self.model_name,
|
||
|
model_kwargs={"cache_dir": self.cache_dir, **model_kwargs},
|
||
|
)
|
||
|
|
||
|
def predict(self, image: Image) -> list[str]:
|
||
|
predictions = self.model(image)
|
||
|
tags = list(
|
||
|
{
|
||
|
tag
|
||
|
for pred in predictions
|
||
|
for tag in pred["label"].split(", ")
|
||
|
if pred["score"] >= self.min_score
|
||
|
}
|
||
|
)
|
||
|
return tags
|