0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-21 00:52:43 -05:00
immich/machine-learning/app/models/base.py

161 lines
5.3 KiB
Python
Raw Normal View History

from __future__ import annotations
from abc import ABC, abstractmethod
from pathlib import Path
from shutil import rmtree
from typing import Any, ClassVar
from huggingface_hub import snapshot_download
import ann.ann
2024-06-25 12:00:24 -04:00
from app.sessions.ort import OrtSession
from ..config import clean_name, log, settings
from ..schemas import ModelFormat, ModelIdentity, ModelSession, ModelTask, ModelType
2024-06-25 12:00:24 -04:00
from ..sessions.ann import AnnSession
class InferenceModel(ABC):
depends: ClassVar[list[ModelIdentity]]
identity: ClassVar[ModelIdentity]
def __init__(
self,
model_name: str,
cache_dir: Path | str | None = None,
preferred_format: ModelFormat | None = None,
2024-06-25 12:00:24 -04:00
session: ModelSession | None = None,
**model_kwargs: Any,
) -> None:
2024-06-25 12:00:24 -04:00
self.loaded = session is not None
2024-06-20 14:13:18 -04:00
self.load_attempts = 0
self.model_name = clean_name(model_name)
2024-06-25 12:00:24 -04:00
self.cache_dir = Path(cache_dir) if cache_dir is not None else self._cache_dir_default
self.model_format = preferred_format if preferred_format is not None else self._model_format_default
if session is not None:
self.session = session
def download(self) -> None:
if not self.cached:
log.info(
f"Downloading {self.model_type.replace('-', ' ')} model '{self.model_name}'. This may take a while."
)
self._download()
def load(self) -> None:
if self.loaded:
return
2024-06-20 14:13:18 -04:00
self.load_attempts += 1
self.download()
2024-06-20 14:13:18 -04:00
attempt = f"Attempt #{self.load_attempts + 1} to load" if self.load_attempts else "Loading"
log.info(f"{attempt} {self.model_type.replace('-', ' ')} model '{self.model_name}' to memory")
self.session = self._load()
self.loaded = True
def predict(self, *inputs: Any, **model_kwargs: Any) -> Any:
self.load()
if model_kwargs:
self.configure(**model_kwargs)
return self._predict(*inputs, **model_kwargs)
@abstractmethod
def _predict(self, *inputs: Any, **model_kwargs: Any) -> Any: ...
def configure(self, **kwargs: Any) -> None:
pass
def _download(self) -> None:
2024-06-25 12:00:24 -04:00
ignore_patterns = [] if self.model_format == ModelFormat.ARMNN else ["*.armnn"]
snapshot_download(
f"immich-app/{clean_name(self.model_name)}",
cache_dir=self.cache_dir,
local_dir=self.cache_dir,
local_dir_use_symlinks=False,
ignore_patterns=ignore_patterns,
)
def _load(self) -> ModelSession:
return self._make_session(self.model_path)
def clear_cache(self) -> None:
if not self.cache_dir.exists():
log.warning(
f"Attempted to clear cache for model '{self.model_name}', but cache directory does not exist",
)
return
if not rmtree.avoids_symlink_attacks:
raise RuntimeError("Attempted to clear cache, but rmtree is not safe on this platform")
if self.cache_dir.is_dir():
log.info(f"Cleared cache directory for model '{self.model_name}'.")
rmtree(self.cache_dir)
else:
log.warning(
(
f"Encountered file instead of directory at cache path "
f"for '{self.model_name}'. Removing file and replacing with a directory."
),
)
self.cache_dir.unlink()
self.cache_dir.mkdir(parents=True, exist_ok=True)
def _make_session(self, model_path: Path) -> ModelSession:
match model_path.suffix:
case ".armnn":
2024-06-25 12:00:24 -04:00
session: ModelSession = AnnSession(model_path)
case ".onnx":
2024-06-25 12:00:24 -04:00
session = OrtSession(model_path)
case _:
raise ValueError(f"Unsupported model file type: {model_path.suffix}")
return session
@property
def model_dir(self) -> Path:
return self.cache_dir / self.model_type.value
@property
def model_path(self) -> Path:
2024-06-25 12:00:24 -04:00
return self.model_dir / f"model.{self.model_format}"
@property
def model_task(self) -> ModelTask:
return self.identity[1]
@property
def model_type(self) -> ModelType:
return self.identity[0]
@property
def cache_dir(self) -> Path:
return self._cache_dir
@cache_dir.setter
def cache_dir(self, cache_dir: Path) -> None:
self._cache_dir = cache_dir
@property
2024-06-25 12:00:24 -04:00
def _cache_dir_default(self) -> Path:
return settings.cache_folder / self.model_task.value / self.model_name
@property
def cached(self) -> bool:
return self.model_path.is_file()
@property
2024-06-25 12:00:24 -04:00
def model_format(self) -> ModelFormat:
return self._preferred_format
2024-06-25 12:00:24 -04:00
@model_format.setter
def model_format(self, preferred_format: ModelFormat) -> None:
log.debug(f"Setting preferred format to {preferred_format}")
self._preferred_format = preferred_format
@property
2024-06-25 12:00:24 -04:00
def _model_format_default(self) -> ModelFormat:
prefer_ann = ann.ann.is_available and settings.ann
ann_exists = (self.model_dir / "model.armnn").is_file()
if prefer_ann and not ann_exists:
log.warning(f"ARM NN is available, but '{self.model_name}' does not support ARM NN. Falling back to ONNX.")
return ModelFormat.ARMNN if prefer_ann and ann_exists else ModelFormat.ONNX