0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-21 00:52:43 -05:00
immich/machine-learning/app/config.py

128 lines
3.5 KiB
Python
Raw Permalink Normal View History

import concurrent.futures
import logging
import os
2023-12-14 14:51:24 -05:00
import sys
from pathlib import Path
2023-12-14 14:51:24 -05:00
from socket import socket
2023-12-14 14:51:24 -05:00
from gunicorn.arbiter import Arbiter
from pydantic import BaseModel, BaseSettings
from rich.console import Console
from rich.logging import RichHandler
2023-12-14 14:51:24 -05:00
from uvicorn import Server
from uvicorn.workers import UvicornWorker
from .schemas import ModelType
class PreloadModelData(BaseModel):
clip: str | None
facial_recognition: str | None
class Settings(BaseSettings):
cache_folder: str = "/cache"
model_ttl: int = 300
model_ttl_poll_s: int = 10
host: str = "0.0.0.0"
port: int = 3003
workers: int = 1
test_full: bool = False
request_threads: int = os.cpu_count() or 4
model_inter_op_threads: int = 0
model_intra_op_threads: int = 0
ann: bool = True
preload: PreloadModelData | None = None
class Config:
env_prefix = "MACHINE_LEARNING_"
case_sensitive = False
env_nested_delimiter = "__"
class LogSettings(BaseSettings):
log_level: str = "info"
no_color: bool = False
class Config:
case_sensitive = False
_clean_name = str.maketrans(":\\/", "___", ".")
def clean_name(model_name: str) -> str:
return model_name.split("/")[-1].translate(_clean_name)
def get_cache_dir(model_name: str, model_type: ModelType) -> Path:
return Path(settings.cache_folder) / model_type.value / clean_name(model_name)
def get_hf_model_name(model_name: str) -> str:
return f"immich-app/{clean_name(model_name)}"
LOG_LEVELS: dict[str, int] = {
"critical": logging.ERROR,
"error": logging.ERROR,
"warning": logging.WARNING,
"warn": logging.WARNING,
"info": logging.INFO,
"log": logging.INFO,
"debug": logging.DEBUG,
"verbose": logging.DEBUG,
}
settings = Settings()
log_settings = LogSettings()
LOG_LEVEL = LOG_LEVELS.get(log_settings.log_level.lower(), logging.INFO)
class CustomRichHandler(RichHandler):
def __init__(self) -> None:
console = Console(color_system="standard", no_color=log_settings.no_color)
self.excluded = ["uvicorn", "starlette", "fastapi"]
super().__init__(
show_path=False,
omit_repeated_times=False,
console=console,
rich_tracebacks=True,
tracebacks_suppress=[*self.excluded, concurrent.futures],
tracebacks_show_locals=LOG_LEVEL == logging.DEBUG,
)
# hack to exclude certain modules from rich tracebacks
def emit(self, record: logging.LogRecord) -> None:
if record.exc_info is not None:
tb = record.exc_info[2]
while tb is not None:
if any(excluded in tb.tb_frame.f_code.co_filename for excluded in self.excluded):
tb.tb_frame.f_locals["_rich_traceback_omit"] = True
tb = tb.tb_next
return super().emit(record)
log = logging.getLogger("ml.log")
log.setLevel(LOG_LEVEL)
2023-12-14 14:51:24 -05:00
# patches this issue https://github.com/encode/uvicorn/discussions/1803
class CustomUvicornServer(Server):
async def shutdown(self, sockets: list[socket] | None = None) -> None:
for sock in sockets or []:
sock.close()
await super().shutdown()
class CustomUvicornWorker(UvicornWorker):
async def _serve(self) -> None:
self.config.app = self.wsgi
server = CustomUvicornServer(config=self.config)
self._install_sigquit_handler()
await server.serve(sockets=self.sockets)
if not server.started:
sys.exit(Arbiter.WORKER_BOOT_ERROR)