0
Fork 0
mirror of https://github.com/willnorris/imageproxy.git synced 2025-01-20 22:53:00 -05:00
imageproxy/vendor/golang.org/x/image/tiff/reader.go
Will Norris b5984d2822 update all downstream dependencies
no specific features I'm looking to add, just keeping thing up to date.
Unit tests and my manual testing seems like everything is still working
as expected.
2017-06-01 08:37:07 -07:00

681 lines
17 KiB
Go

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package tiff implements a TIFF image decoder and encoder.
//
// The TIFF specification is at http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf
package tiff // import "golang.org/x/image/tiff"
import (
"compress/zlib"
"encoding/binary"
"fmt"
"image"
"image/color"
"io"
"io/ioutil"
"math"
"golang.org/x/image/tiff/lzw"
)
// A FormatError reports that the input is not a valid TIFF image.
type FormatError string
func (e FormatError) Error() string {
return "tiff: invalid format: " + string(e)
}
// An UnsupportedError reports that the input uses a valid but
// unimplemented feature.
type UnsupportedError string
func (e UnsupportedError) Error() string {
return "tiff: unsupported feature: " + string(e)
}
var errNoPixels = FormatError("not enough pixel data")
type decoder struct {
r io.ReaderAt
byteOrder binary.ByteOrder
config image.Config
mode imageMode
bpp uint
features map[int][]uint
palette []color.Color
buf []byte
off int // Current offset in buf.
v uint32 // Buffer value for reading with arbitrary bit depths.
nbits uint // Remaining number of bits in v.
}
// firstVal returns the first uint of the features entry with the given tag,
// or 0 if the tag does not exist.
func (d *decoder) firstVal(tag int) uint {
f := d.features[tag]
if len(f) == 0 {
return 0
}
return f[0]
}
// ifdUint decodes the IFD entry in p, which must be of the Byte, Short
// or Long type, and returns the decoded uint values.
func (d *decoder) ifdUint(p []byte) (u []uint, err error) {
var raw []byte
if len(p) < ifdLen {
return nil, FormatError("bad IFD entry")
}
datatype := d.byteOrder.Uint16(p[2:4])
if dt := int(datatype); dt <= 0 || dt >= len(lengths) {
return nil, UnsupportedError("IFD entry datatype")
}
count := d.byteOrder.Uint32(p[4:8])
if count > math.MaxInt32/lengths[datatype] {
return nil, FormatError("IFD data too large")
}
if datalen := lengths[datatype] * count; datalen > 4 {
// The IFD contains a pointer to the real value.
raw = make([]byte, datalen)
_, err = d.r.ReadAt(raw, int64(d.byteOrder.Uint32(p[8:12])))
} else {
raw = p[8 : 8+datalen]
}
if err != nil {
return nil, err
}
u = make([]uint, count)
switch datatype {
case dtByte:
for i := uint32(0); i < count; i++ {
u[i] = uint(raw[i])
}
case dtShort:
for i := uint32(0); i < count; i++ {
u[i] = uint(d.byteOrder.Uint16(raw[2*i : 2*(i+1)]))
}
case dtLong:
for i := uint32(0); i < count; i++ {
u[i] = uint(d.byteOrder.Uint32(raw[4*i : 4*(i+1)]))
}
default:
return nil, UnsupportedError("data type")
}
return u, nil
}
// parseIFD decides whether the the IFD entry in p is "interesting" and
// stows away the data in the decoder. It returns the tag number of the
// entry and an error, if any.
func (d *decoder) parseIFD(p []byte) (int, error) {
tag := d.byteOrder.Uint16(p[0:2])
switch tag {
case tBitsPerSample,
tExtraSamples,
tPhotometricInterpretation,
tCompression,
tPredictor,
tStripOffsets,
tStripByteCounts,
tRowsPerStrip,
tTileWidth,
tTileLength,
tTileOffsets,
tTileByteCounts,
tImageLength,
tImageWidth:
val, err := d.ifdUint(p)
if err != nil {
return 0, err
}
d.features[int(tag)] = val
case tColorMap:
val, err := d.ifdUint(p)
if err != nil {
return 0, err
}
numcolors := len(val) / 3
if len(val)%3 != 0 || numcolors <= 0 || numcolors > 256 {
return 0, FormatError("bad ColorMap length")
}
d.palette = make([]color.Color, numcolors)
for i := 0; i < numcolors; i++ {
d.palette[i] = color.RGBA64{
uint16(val[i]),
uint16(val[i+numcolors]),
uint16(val[i+2*numcolors]),
0xffff,
}
}
case tSampleFormat:
// Page 27 of the spec: If the SampleFormat is present and
// the value is not 1 [= unsigned integer data], a Baseline
// TIFF reader that cannot handle the SampleFormat value
// must terminate the import process gracefully.
val, err := d.ifdUint(p)
if err != nil {
return 0, err
}
for _, v := range val {
if v != 1 {
return 0, UnsupportedError("sample format")
}
}
}
return int(tag), nil
}
// readBits reads n bits from the internal buffer starting at the current offset.
func (d *decoder) readBits(n uint) (v uint32, ok bool) {
for d.nbits < n {
d.v <<= 8
if d.off >= len(d.buf) {
return 0, false
}
d.v |= uint32(d.buf[d.off])
d.off++
d.nbits += 8
}
d.nbits -= n
rv := d.v >> d.nbits
d.v &^= rv << d.nbits
return rv, true
}
// flushBits discards the unread bits in the buffer used by readBits.
// It is used at the end of a line.
func (d *decoder) flushBits() {
d.v = 0
d.nbits = 0
}
// minInt returns the smaller of x or y.
func minInt(a, b int) int {
if a <= b {
return a
}
return b
}
// decode decodes the raw data of an image.
// It reads from d.buf and writes the strip or tile into dst.
func (d *decoder) decode(dst image.Image, xmin, ymin, xmax, ymax int) error {
d.off = 0
// Apply horizontal predictor if necessary.
// In this case, p contains the color difference to the preceding pixel.
// See page 64-65 of the spec.
if d.firstVal(tPredictor) == prHorizontal {
switch d.bpp {
case 16:
var off int
n := 2 * len(d.features[tBitsPerSample]) // bytes per sample times samples per pixel
for y := ymin; y < ymax; y++ {
off += n
for x := 0; x < (xmax-xmin-1)*n; x += 2 {
if off+2 > len(d.buf) {
return errNoPixels
}
v0 := d.byteOrder.Uint16(d.buf[off-n : off-n+2])
v1 := d.byteOrder.Uint16(d.buf[off : off+2])
d.byteOrder.PutUint16(d.buf[off:off+2], v1+v0)
off += 2
}
}
case 8:
var off int
n := 1 * len(d.features[tBitsPerSample]) // bytes per sample times samples per pixel
for y := ymin; y < ymax; y++ {
off += n
for x := 0; x < (xmax-xmin-1)*n; x++ {
if off >= len(d.buf) {
return errNoPixels
}
d.buf[off] += d.buf[off-n]
off++
}
}
case 1:
return UnsupportedError("horizontal predictor with 1 BitsPerSample")
}
}
rMaxX := minInt(xmax, dst.Bounds().Max.X)
rMaxY := minInt(ymax, dst.Bounds().Max.Y)
switch d.mode {
case mGray, mGrayInvert:
if d.bpp == 16 {
img := dst.(*image.Gray16)
for y := ymin; y < rMaxY; y++ {
for x := xmin; x < rMaxX; x++ {
if d.off+2 > len(d.buf) {
return errNoPixels
}
v := d.byteOrder.Uint16(d.buf[d.off : d.off+2])
d.off += 2
if d.mode == mGrayInvert {
v = 0xffff - v
}
img.SetGray16(x, y, color.Gray16{v})
}
}
} else {
img := dst.(*image.Gray)
max := uint32((1 << d.bpp) - 1)
for y := ymin; y < rMaxY; y++ {
for x := xmin; x < rMaxX; x++ {
v, ok := d.readBits(d.bpp)
if !ok {
return errNoPixels
}
v = v * 0xff / max
if d.mode == mGrayInvert {
v = 0xff - v
}
img.SetGray(x, y, color.Gray{uint8(v)})
}
d.flushBits()
}
}
case mPaletted:
img := dst.(*image.Paletted)
for y := ymin; y < rMaxY; y++ {
for x := xmin; x < rMaxX; x++ {
v, ok := d.readBits(d.bpp)
if !ok {
return errNoPixels
}
img.SetColorIndex(x, y, uint8(v))
}
d.flushBits()
}
case mRGB:
if d.bpp == 16 {
img := dst.(*image.RGBA64)
for y := ymin; y < rMaxY; y++ {
for x := xmin; x < rMaxX; x++ {
if d.off+6 > len(d.buf) {
return errNoPixels
}
r := d.byteOrder.Uint16(d.buf[d.off+0 : d.off+2])
g := d.byteOrder.Uint16(d.buf[d.off+2 : d.off+4])
b := d.byteOrder.Uint16(d.buf[d.off+4 : d.off+6])
d.off += 6
img.SetRGBA64(x, y, color.RGBA64{r, g, b, 0xffff})
}
}
} else {
img := dst.(*image.RGBA)
for y := ymin; y < rMaxY; y++ {
min := img.PixOffset(xmin, y)
max := img.PixOffset(rMaxX, y)
off := (y - ymin) * (xmax - xmin) * 3
for i := min; i < max; i += 4 {
if off+3 > len(d.buf) {
return errNoPixels
}
img.Pix[i+0] = d.buf[off+0]
img.Pix[i+1] = d.buf[off+1]
img.Pix[i+2] = d.buf[off+2]
img.Pix[i+3] = 0xff
off += 3
}
}
}
case mNRGBA:
if d.bpp == 16 {
img := dst.(*image.NRGBA64)
for y := ymin; y < rMaxY; y++ {
for x := xmin; x < rMaxX; x++ {
if d.off+8 > len(d.buf) {
return errNoPixels
}
r := d.byteOrder.Uint16(d.buf[d.off+0 : d.off+2])
g := d.byteOrder.Uint16(d.buf[d.off+2 : d.off+4])
b := d.byteOrder.Uint16(d.buf[d.off+4 : d.off+6])
a := d.byteOrder.Uint16(d.buf[d.off+6 : d.off+8])
d.off += 8
img.SetNRGBA64(x, y, color.NRGBA64{r, g, b, a})
}
}
} else {
img := dst.(*image.NRGBA)
for y := ymin; y < rMaxY; y++ {
min := img.PixOffset(xmin, y)
max := img.PixOffset(rMaxX, y)
i0, i1 := (y-ymin)*(xmax-xmin)*4, (y-ymin+1)*(xmax-xmin)*4
if i1 > len(d.buf) {
return errNoPixels
}
copy(img.Pix[min:max], d.buf[i0:i1])
}
}
case mRGBA:
if d.bpp == 16 {
img := dst.(*image.RGBA64)
for y := ymin; y < rMaxY; y++ {
for x := xmin; x < rMaxX; x++ {
if d.off+8 > len(d.buf) {
return errNoPixels
}
r := d.byteOrder.Uint16(d.buf[d.off+0 : d.off+2])
g := d.byteOrder.Uint16(d.buf[d.off+2 : d.off+4])
b := d.byteOrder.Uint16(d.buf[d.off+4 : d.off+6])
a := d.byteOrder.Uint16(d.buf[d.off+6 : d.off+8])
d.off += 8
img.SetRGBA64(x, y, color.RGBA64{r, g, b, a})
}
}
} else {
img := dst.(*image.RGBA)
for y := ymin; y < rMaxY; y++ {
min := img.PixOffset(xmin, y)
max := img.PixOffset(rMaxX, y)
i0, i1 := (y-ymin)*(xmax-xmin)*4, (y-ymin+1)*(xmax-xmin)*4
if i1 > len(d.buf) {
return errNoPixels
}
copy(img.Pix[min:max], d.buf[i0:i1])
}
}
}
return nil
}
func newDecoder(r io.Reader) (*decoder, error) {
d := &decoder{
r: newReaderAt(r),
features: make(map[int][]uint),
}
p := make([]byte, 8)
if _, err := d.r.ReadAt(p, 0); err != nil {
return nil, err
}
switch string(p[0:4]) {
case leHeader:
d.byteOrder = binary.LittleEndian
case beHeader:
d.byteOrder = binary.BigEndian
default:
return nil, FormatError("malformed header")
}
ifdOffset := int64(d.byteOrder.Uint32(p[4:8]))
// The first two bytes contain the number of entries (12 bytes each).
if _, err := d.r.ReadAt(p[0:2], ifdOffset); err != nil {
return nil, err
}
numItems := int(d.byteOrder.Uint16(p[0:2]))
// All IFD entries are read in one chunk.
p = make([]byte, ifdLen*numItems)
if _, err := d.r.ReadAt(p, ifdOffset+2); err != nil {
return nil, err
}
prevTag := -1
for i := 0; i < len(p); i += ifdLen {
tag, err := d.parseIFD(p[i : i+ifdLen])
if err != nil {
return nil, err
}
if tag <= prevTag {
return nil, FormatError("tags are not sorted in ascending order")
}
prevTag = tag
}
d.config.Width = int(d.firstVal(tImageWidth))
d.config.Height = int(d.firstVal(tImageLength))
if _, ok := d.features[tBitsPerSample]; !ok {
return nil, FormatError("BitsPerSample tag missing")
}
d.bpp = d.firstVal(tBitsPerSample)
switch d.bpp {
case 0:
return nil, FormatError("BitsPerSample must not be 0")
case 1, 8, 16:
// Nothing to do, these are accepted by this implementation.
default:
return nil, UnsupportedError(fmt.Sprintf("BitsPerSample of %v", d.bpp))
}
// Determine the image mode.
switch d.firstVal(tPhotometricInterpretation) {
case pRGB:
if d.bpp == 16 {
for _, b := range d.features[tBitsPerSample] {
if b != 16 {
return nil, FormatError("wrong number of samples for 16bit RGB")
}
}
} else {
for _, b := range d.features[tBitsPerSample] {
if b != 8 {
return nil, FormatError("wrong number of samples for 8bit RGB")
}
}
}
// RGB images normally have 3 samples per pixel.
// If there are more, ExtraSamples (p. 31-32 of the spec)
// gives their meaning (usually an alpha channel).
//
// This implementation does not support extra samples
// of an unspecified type.
switch len(d.features[tBitsPerSample]) {
case 3:
d.mode = mRGB
if d.bpp == 16 {
d.config.ColorModel = color.RGBA64Model
} else {
d.config.ColorModel = color.RGBAModel
}
case 4:
switch d.firstVal(tExtraSamples) {
case 1:
d.mode = mRGBA
if d.bpp == 16 {
d.config.ColorModel = color.RGBA64Model
} else {
d.config.ColorModel = color.RGBAModel
}
case 2:
d.mode = mNRGBA
if d.bpp == 16 {
d.config.ColorModel = color.NRGBA64Model
} else {
d.config.ColorModel = color.NRGBAModel
}
default:
return nil, FormatError("wrong number of samples for RGB")
}
default:
return nil, FormatError("wrong number of samples for RGB")
}
case pPaletted:
d.mode = mPaletted
d.config.ColorModel = color.Palette(d.palette)
case pWhiteIsZero:
d.mode = mGrayInvert
if d.bpp == 16 {
d.config.ColorModel = color.Gray16Model
} else {
d.config.ColorModel = color.GrayModel
}
case pBlackIsZero:
d.mode = mGray
if d.bpp == 16 {
d.config.ColorModel = color.Gray16Model
} else {
d.config.ColorModel = color.GrayModel
}
default:
return nil, UnsupportedError("color model")
}
return d, nil
}
// DecodeConfig returns the color model and dimensions of a TIFF image without
// decoding the entire image.
func DecodeConfig(r io.Reader) (image.Config, error) {
d, err := newDecoder(r)
if err != nil {
return image.Config{}, err
}
return d.config, nil
}
// Decode reads a TIFF image from r and returns it as an image.Image.
// The type of Image returned depends on the contents of the TIFF.
func Decode(r io.Reader) (img image.Image, err error) {
d, err := newDecoder(r)
if err != nil {
return
}
blockPadding := false
blockWidth := d.config.Width
blockHeight := d.config.Height
blocksAcross := 1
blocksDown := 1
if d.config.Width == 0 {
blocksAcross = 0
}
if d.config.Height == 0 {
blocksDown = 0
}
var blockOffsets, blockCounts []uint
if int(d.firstVal(tTileWidth)) != 0 {
blockPadding = true
blockWidth = int(d.firstVal(tTileWidth))
blockHeight = int(d.firstVal(tTileLength))
if blockWidth != 0 {
blocksAcross = (d.config.Width + blockWidth - 1) / blockWidth
}
if blockHeight != 0 {
blocksDown = (d.config.Height + blockHeight - 1) / blockHeight
}
blockCounts = d.features[tTileByteCounts]
blockOffsets = d.features[tTileOffsets]
} else {
if int(d.firstVal(tRowsPerStrip)) != 0 {
blockHeight = int(d.firstVal(tRowsPerStrip))
}
if blockHeight != 0 {
blocksDown = (d.config.Height + blockHeight - 1) / blockHeight
}
blockOffsets = d.features[tStripOffsets]
blockCounts = d.features[tStripByteCounts]
}
// Check if we have the right number of strips/tiles, offsets and counts.
if n := blocksAcross * blocksDown; len(blockOffsets) < n || len(blockCounts) < n {
return nil, FormatError("inconsistent header")
}
imgRect := image.Rect(0, 0, d.config.Width, d.config.Height)
switch d.mode {
case mGray, mGrayInvert:
if d.bpp == 16 {
img = image.NewGray16(imgRect)
} else {
img = image.NewGray(imgRect)
}
case mPaletted:
img = image.NewPaletted(imgRect, d.palette)
case mNRGBA:
if d.bpp == 16 {
img = image.NewNRGBA64(imgRect)
} else {
img = image.NewNRGBA(imgRect)
}
case mRGB, mRGBA:
if d.bpp == 16 {
img = image.NewRGBA64(imgRect)
} else {
img = image.NewRGBA(imgRect)
}
}
for i := 0; i < blocksAcross; i++ {
blkW := blockWidth
if !blockPadding && i == blocksAcross-1 && d.config.Width%blockWidth != 0 {
blkW = d.config.Width % blockWidth
}
for j := 0; j < blocksDown; j++ {
blkH := blockHeight
if !blockPadding && j == blocksDown-1 && d.config.Height%blockHeight != 0 {
blkH = d.config.Height % blockHeight
}
offset := int64(blockOffsets[j*blocksAcross+i])
n := int64(blockCounts[j*blocksAcross+i])
switch d.firstVal(tCompression) {
// According to the spec, Compression does not have a default value,
// but some tools interpret a missing Compression value as none so we do
// the same.
case cNone, 0:
if b, ok := d.r.(*buffer); ok {
d.buf, err = b.Slice(int(offset), int(n))
} else {
d.buf = make([]byte, n)
_, err = d.r.ReadAt(d.buf, offset)
}
case cLZW:
r := lzw.NewReader(io.NewSectionReader(d.r, offset, n), lzw.MSB, 8)
d.buf, err = ioutil.ReadAll(r)
r.Close()
case cDeflate, cDeflateOld:
var r io.ReadCloser
r, err = zlib.NewReader(io.NewSectionReader(d.r, offset, n))
if err != nil {
return nil, err
}
d.buf, err = ioutil.ReadAll(r)
r.Close()
case cPackBits:
d.buf, err = unpackBits(io.NewSectionReader(d.r, offset, n))
default:
err = UnsupportedError(fmt.Sprintf("compression value %d", d.firstVal(tCompression)))
}
if err != nil {
return nil, err
}
xmin := i * blockWidth
ymin := j * blockHeight
xmax := xmin + blkW
ymax := ymin + blkH
err = d.decode(img, xmin, ymin, xmax, ymax)
if err != nil {
return nil, err
}
}
}
return
}
func init() {
image.RegisterFormat("tiff", leHeader, Decode, DecodeConfig)
image.RegisterFormat("tiff", beHeader, Decode, DecodeConfig)
}