mirror of
https://github.com/willnorris/imageproxy.git
synced 2025-01-20 22:53:00 -05:00
583 lines
13 KiB
Go
583 lines
13 KiB
Go
package imaging
|
|
|
|
import (
|
|
"image"
|
|
"math"
|
|
)
|
|
|
|
type iwpair struct {
|
|
i int
|
|
w int32
|
|
}
|
|
|
|
type pweights struct {
|
|
iwpairs []iwpair
|
|
wsum int32
|
|
}
|
|
|
|
func precomputeWeights(dstSize, srcSize int, filter ResampleFilter) []pweights {
|
|
du := float64(srcSize) / float64(dstSize)
|
|
scale := du
|
|
if scale < 1.0 {
|
|
scale = 1.0
|
|
}
|
|
ru := math.Ceil(scale * filter.Support)
|
|
|
|
out := make([]pweights, dstSize)
|
|
|
|
for v := 0; v < dstSize; v++ {
|
|
fu := (float64(v)+0.5)*du - 0.5
|
|
|
|
startu := int(math.Ceil(fu - ru))
|
|
if startu < 0 {
|
|
startu = 0
|
|
}
|
|
endu := int(math.Floor(fu + ru))
|
|
if endu > srcSize-1 {
|
|
endu = srcSize - 1
|
|
}
|
|
|
|
wsum := int32(0)
|
|
for u := startu; u <= endu; u++ {
|
|
w := int32(0xff * filter.Kernel((float64(u)-fu)/scale))
|
|
if w != 0 {
|
|
wsum += w
|
|
out[v].iwpairs = append(out[v].iwpairs, iwpair{u, w})
|
|
}
|
|
}
|
|
out[v].wsum = wsum
|
|
}
|
|
|
|
return out
|
|
}
|
|
|
|
// Resize resizes the image to the specified width and height using the specified resampling
|
|
// filter and returns the transformed image. If one of width or height is 0, the image aspect
|
|
// ratio is preserved.
|
|
//
|
|
// Supported resample filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali,
|
|
// CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine.
|
|
//
|
|
// Usage example:
|
|
//
|
|
// dstImage := imaging.Resize(srcImage, 800, 600, imaging.Lanczos)
|
|
//
|
|
func Resize(img image.Image, width, height int, filter ResampleFilter) *image.NRGBA {
|
|
dstW, dstH := width, height
|
|
|
|
if dstW < 0 || dstH < 0 {
|
|
return &image.NRGBA{}
|
|
}
|
|
if dstW == 0 && dstH == 0 {
|
|
return &image.NRGBA{}
|
|
}
|
|
|
|
src := toNRGBA(img)
|
|
|
|
srcW := src.Bounds().Max.X
|
|
srcH := src.Bounds().Max.Y
|
|
|
|
if srcW <= 0 || srcH <= 0 {
|
|
return &image.NRGBA{}
|
|
}
|
|
|
|
// if new width or height is 0 then preserve aspect ratio, minimum 1px
|
|
if dstW == 0 {
|
|
tmpW := float64(dstH) * float64(srcW) / float64(srcH)
|
|
dstW = int(math.Max(1.0, math.Floor(tmpW+0.5)))
|
|
}
|
|
if dstH == 0 {
|
|
tmpH := float64(dstW) * float64(srcH) / float64(srcW)
|
|
dstH = int(math.Max(1.0, math.Floor(tmpH+0.5)))
|
|
}
|
|
|
|
var dst *image.NRGBA
|
|
|
|
if filter.Support <= 0.0 {
|
|
// nearest-neighbor special case
|
|
dst = resizeNearest(src, dstW, dstH)
|
|
|
|
} else {
|
|
// two-pass resize
|
|
if srcW != dstW {
|
|
dst = resizeHorizontal(src, dstW, filter)
|
|
} else {
|
|
dst = src
|
|
}
|
|
|
|
if srcH != dstH {
|
|
dst = resizeVertical(dst, dstH, filter)
|
|
}
|
|
}
|
|
|
|
return dst
|
|
}
|
|
|
|
func resizeHorizontal(src *image.NRGBA, width int, filter ResampleFilter) *image.NRGBA {
|
|
srcBounds := src.Bounds()
|
|
srcW := srcBounds.Max.X
|
|
srcH := srcBounds.Max.Y
|
|
|
|
dstW := width
|
|
dstH := srcH
|
|
|
|
dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH))
|
|
|
|
weights := precomputeWeights(dstW, srcW, filter)
|
|
|
|
parallel(dstH, func(partStart, partEnd int) {
|
|
for dstY := partStart; dstY < partEnd; dstY++ {
|
|
for dstX := 0; dstX < dstW; dstX++ {
|
|
var c [4]int32
|
|
for _, iw := range weights[dstX].iwpairs {
|
|
i := dstY*src.Stride + iw.i*4
|
|
c[0] += int32(src.Pix[i+0]) * iw.w
|
|
c[1] += int32(src.Pix[i+1]) * iw.w
|
|
c[2] += int32(src.Pix[i+2]) * iw.w
|
|
c[3] += int32(src.Pix[i+3]) * iw.w
|
|
}
|
|
j := dstY*dst.Stride + dstX*4
|
|
sum := weights[dstX].wsum
|
|
dst.Pix[j+0] = clampint32(int32(float32(c[0])/float32(sum) + 0.5))
|
|
dst.Pix[j+1] = clampint32(int32(float32(c[1])/float32(sum) + 0.5))
|
|
dst.Pix[j+2] = clampint32(int32(float32(c[2])/float32(sum) + 0.5))
|
|
dst.Pix[j+3] = clampint32(int32(float32(c[3])/float32(sum) + 0.5))
|
|
}
|
|
}
|
|
})
|
|
|
|
return dst
|
|
}
|
|
|
|
func resizeVertical(src *image.NRGBA, height int, filter ResampleFilter) *image.NRGBA {
|
|
srcBounds := src.Bounds()
|
|
srcW := srcBounds.Max.X
|
|
srcH := srcBounds.Max.Y
|
|
|
|
dstW := srcW
|
|
dstH := height
|
|
|
|
dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH))
|
|
|
|
weights := precomputeWeights(dstH, srcH, filter)
|
|
|
|
parallel(dstW, func(partStart, partEnd int) {
|
|
|
|
for dstX := partStart; dstX < partEnd; dstX++ {
|
|
for dstY := 0; dstY < dstH; dstY++ {
|
|
var c [4]int32
|
|
for _, iw := range weights[dstY].iwpairs {
|
|
i := iw.i*src.Stride + dstX*4
|
|
c[0] += int32(src.Pix[i+0]) * iw.w
|
|
c[1] += int32(src.Pix[i+1]) * iw.w
|
|
c[2] += int32(src.Pix[i+2]) * iw.w
|
|
c[3] += int32(src.Pix[i+3]) * iw.w
|
|
}
|
|
j := dstY*dst.Stride + dstX*4
|
|
sum := weights[dstY].wsum
|
|
dst.Pix[j+0] = clampint32(int32(float32(c[0])/float32(sum) + 0.5))
|
|
dst.Pix[j+1] = clampint32(int32(float32(c[1])/float32(sum) + 0.5))
|
|
dst.Pix[j+2] = clampint32(int32(float32(c[2])/float32(sum) + 0.5))
|
|
dst.Pix[j+3] = clampint32(int32(float32(c[3])/float32(sum) + 0.5))
|
|
}
|
|
}
|
|
|
|
})
|
|
|
|
return dst
|
|
}
|
|
|
|
// fast nearest-neighbor resize, no filtering
|
|
func resizeNearest(src *image.NRGBA, width, height int) *image.NRGBA {
|
|
dstW, dstH := width, height
|
|
|
|
srcBounds := src.Bounds()
|
|
srcW := srcBounds.Max.X
|
|
srcH := srcBounds.Max.Y
|
|
|
|
dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH))
|
|
|
|
dx := float64(srcW) / float64(dstW)
|
|
dy := float64(srcH) / float64(dstH)
|
|
|
|
parallel(dstH, func(partStart, partEnd int) {
|
|
|
|
for dstY := partStart; dstY < partEnd; dstY++ {
|
|
fy := (float64(dstY)+0.5)*dy - 0.5
|
|
|
|
for dstX := 0; dstX < dstW; dstX++ {
|
|
fx := (float64(dstX)+0.5)*dx - 0.5
|
|
|
|
srcX := int(math.Min(math.Max(math.Floor(fx+0.5), 0.0), float64(srcW)))
|
|
srcY := int(math.Min(math.Max(math.Floor(fy+0.5), 0.0), float64(srcH)))
|
|
|
|
srcOff := srcY*src.Stride + srcX*4
|
|
dstOff := dstY*dst.Stride + dstX*4
|
|
|
|
copy(dst.Pix[dstOff:dstOff+4], src.Pix[srcOff:srcOff+4])
|
|
}
|
|
}
|
|
|
|
})
|
|
|
|
return dst
|
|
}
|
|
|
|
// Fit scales down the image using the specified resample filter to fit the specified
|
|
// maximum width and height and returns the transformed image.
|
|
//
|
|
// Supported resample filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali,
|
|
// CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine.
|
|
//
|
|
// Usage example:
|
|
//
|
|
// dstImage := imaging.Fit(srcImage, 800, 600, imaging.Lanczos)
|
|
//
|
|
func Fit(img image.Image, width, height int, filter ResampleFilter) *image.NRGBA {
|
|
maxW, maxH := width, height
|
|
|
|
if maxW <= 0 || maxH <= 0 {
|
|
return &image.NRGBA{}
|
|
}
|
|
|
|
srcBounds := img.Bounds()
|
|
srcW := srcBounds.Dx()
|
|
srcH := srcBounds.Dy()
|
|
|
|
if srcW <= 0 || srcH <= 0 {
|
|
return &image.NRGBA{}
|
|
}
|
|
|
|
if srcW <= maxW && srcH <= maxH {
|
|
return Clone(img)
|
|
}
|
|
|
|
srcAspectRatio := float64(srcW) / float64(srcH)
|
|
maxAspectRatio := float64(maxW) / float64(maxH)
|
|
|
|
var newW, newH int
|
|
if srcAspectRatio > maxAspectRatio {
|
|
newW = maxW
|
|
newH = int(float64(newW) / srcAspectRatio)
|
|
} else {
|
|
newH = maxH
|
|
newW = int(float64(newH) * srcAspectRatio)
|
|
}
|
|
|
|
return Resize(img, newW, newH, filter)
|
|
}
|
|
|
|
// Fill scales the image to the smallest possible size that will cover the specified dimensions,
|
|
// crops the resized image to the specified dimensions using the given anchor point and returns
|
|
// the transformed image.
|
|
//
|
|
// Supported resample filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali,
|
|
// CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine.
|
|
//
|
|
// Usage example:
|
|
//
|
|
// dstImage := imaging.Fill(srcImage, 800, 600, imaging.Center, imaging.Lanczos)
|
|
//
|
|
func Fill(img image.Image, width, height int, anchor Anchor, filter ResampleFilter) *image.NRGBA {
|
|
minW, minH := width, height
|
|
|
|
if minW <= 0 || minH <= 0 {
|
|
return &image.NRGBA{}
|
|
}
|
|
|
|
srcBounds := img.Bounds()
|
|
srcW := srcBounds.Dx()
|
|
srcH := srcBounds.Dy()
|
|
|
|
if srcW <= 0 || srcH <= 0 {
|
|
return &image.NRGBA{}
|
|
}
|
|
|
|
if srcW == minW && srcH == minH {
|
|
return Clone(img)
|
|
}
|
|
|
|
srcAspectRatio := float64(srcW) / float64(srcH)
|
|
minAspectRatio := float64(minW) / float64(minH)
|
|
|
|
var tmp *image.NRGBA
|
|
if srcAspectRatio < minAspectRatio {
|
|
tmp = Resize(img, minW, 0, filter)
|
|
} else {
|
|
tmp = Resize(img, 0, minH, filter)
|
|
}
|
|
|
|
return CropAnchor(tmp, minW, minH, anchor)
|
|
}
|
|
|
|
// Thumbnail scales the image up or down using the specified resample filter, crops it
|
|
// to the specified width and hight and returns the transformed image.
|
|
//
|
|
// Supported resample filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali,
|
|
// CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine.
|
|
//
|
|
// Usage example:
|
|
//
|
|
// dstImage := imaging.Thumbnail(srcImage, 100, 100, imaging.Lanczos)
|
|
//
|
|
func Thumbnail(img image.Image, width, height int, filter ResampleFilter) *image.NRGBA {
|
|
return Fill(img, width, height, Center, filter)
|
|
}
|
|
|
|
// Resample filter struct. It can be used to make custom filters.
|
|
//
|
|
// Supported resample filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali,
|
|
// CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine.
|
|
//
|
|
// General filter recommendations:
|
|
//
|
|
// - Lanczos
|
|
// Probably the best resampling filter for photographic images yielding sharp results,
|
|
// but it's slower than cubic filters (see below).
|
|
//
|
|
// - CatmullRom
|
|
// A sharp cubic filter. It's a good filter for both upscaling and downscaling if sharp results are needed.
|
|
//
|
|
// - MitchellNetravali
|
|
// A high quality cubic filter that produces smoother results with less ringing than CatmullRom.
|
|
//
|
|
// - BSpline
|
|
// A good filter if a very smooth output is needed.
|
|
//
|
|
// - Linear
|
|
// Bilinear interpolation filter, produces reasonably good, smooth output. It's faster than cubic filters.
|
|
//
|
|
// - Box
|
|
// Simple and fast resampling filter appropriate for downscaling.
|
|
// When upscaling it's similar to NearestNeighbor.
|
|
//
|
|
// - NearestNeighbor
|
|
// Fastest resample filter, no antialiasing at all. Rarely used.
|
|
//
|
|
type ResampleFilter struct {
|
|
Support float64
|
|
Kernel func(float64) float64
|
|
}
|
|
|
|
// Nearest-neighbor filter, no anti-aliasing.
|
|
var NearestNeighbor ResampleFilter
|
|
|
|
// Box filter (averaging pixels).
|
|
var Box ResampleFilter
|
|
|
|
// Linear filter.
|
|
var Linear ResampleFilter
|
|
|
|
// Hermite cubic spline filter (BC-spline; B=0; C=0).
|
|
var Hermite ResampleFilter
|
|
|
|
// Mitchell-Netravali cubic filter (BC-spline; B=1/3; C=1/3).
|
|
var MitchellNetravali ResampleFilter
|
|
|
|
// Catmull-Rom - sharp cubic filter (BC-spline; B=0; C=0.5).
|
|
var CatmullRom ResampleFilter
|
|
|
|
// Cubic B-spline - smooth cubic filter (BC-spline; B=1; C=0).
|
|
var BSpline ResampleFilter
|
|
|
|
// Gaussian Blurring Filter.
|
|
var Gaussian ResampleFilter
|
|
|
|
// Bartlett-windowed sinc filter (3 lobes).
|
|
var Bartlett ResampleFilter
|
|
|
|
// Lanczos filter (3 lobes).
|
|
var Lanczos ResampleFilter
|
|
|
|
// Hann-windowed sinc filter (3 lobes).
|
|
var Hann ResampleFilter
|
|
|
|
// Hamming-windowed sinc filter (3 lobes).
|
|
var Hamming ResampleFilter
|
|
|
|
// Blackman-windowed sinc filter (3 lobes).
|
|
var Blackman ResampleFilter
|
|
|
|
// Welch-windowed sinc filter (parabolic window, 3 lobes).
|
|
var Welch ResampleFilter
|
|
|
|
// Cosine-windowed sinc filter (3 lobes).
|
|
var Cosine ResampleFilter
|
|
|
|
func bcspline(x, b, c float64) float64 {
|
|
x = math.Abs(x)
|
|
if x < 1.0 {
|
|
return ((12-9*b-6*c)*x*x*x + (-18+12*b+6*c)*x*x + (6 - 2*b)) / 6
|
|
}
|
|
if x < 2.0 {
|
|
return ((-b-6*c)*x*x*x + (6*b+30*c)*x*x + (-12*b-48*c)*x + (8*b + 24*c)) / 6
|
|
}
|
|
return 0
|
|
}
|
|
|
|
func sinc(x float64) float64 {
|
|
if x == 0 {
|
|
return 1
|
|
}
|
|
return math.Sin(math.Pi*x) / (math.Pi * x)
|
|
}
|
|
|
|
func init() {
|
|
NearestNeighbor = ResampleFilter{
|
|
Support: 0.0, // special case - not applying the filter
|
|
}
|
|
|
|
Box = ResampleFilter{
|
|
Support: 0.5,
|
|
Kernel: func(x float64) float64 {
|
|
x = math.Abs(x)
|
|
if x <= 0.5 {
|
|
return 1.0
|
|
}
|
|
return 0
|
|
},
|
|
}
|
|
|
|
Linear = ResampleFilter{
|
|
Support: 1.0,
|
|
Kernel: func(x float64) float64 {
|
|
x = math.Abs(x)
|
|
if x < 1.0 {
|
|
return 1.0 - x
|
|
}
|
|
return 0
|
|
},
|
|
}
|
|
|
|
Hermite = ResampleFilter{
|
|
Support: 1.0,
|
|
Kernel: func(x float64) float64 {
|
|
x = math.Abs(x)
|
|
if x < 1.0 {
|
|
return bcspline(x, 0.0, 0.0)
|
|
}
|
|
return 0
|
|
},
|
|
}
|
|
|
|
MitchellNetravali = ResampleFilter{
|
|
Support: 2.0,
|
|
Kernel: func(x float64) float64 {
|
|
x = math.Abs(x)
|
|
if x < 2.0 {
|
|
return bcspline(x, 1.0/3.0, 1.0/3.0)
|
|
}
|
|
return 0
|
|
},
|
|
}
|
|
|
|
CatmullRom = ResampleFilter{
|
|
Support: 2.0,
|
|
Kernel: func(x float64) float64 {
|
|
x = math.Abs(x)
|
|
if x < 2.0 {
|
|
return bcspline(x, 0.0, 0.5)
|
|
}
|
|
return 0
|
|
},
|
|
}
|
|
|
|
BSpline = ResampleFilter{
|
|
Support: 2.0,
|
|
Kernel: func(x float64) float64 {
|
|
x = math.Abs(x)
|
|
if x < 2.0 {
|
|
return bcspline(x, 1.0, 0.0)
|
|
}
|
|
return 0
|
|
},
|
|
}
|
|
|
|
Gaussian = ResampleFilter{
|
|
Support: 2.0,
|
|
Kernel: func(x float64) float64 {
|
|
x = math.Abs(x)
|
|
if x < 2.0 {
|
|
return math.Exp(-2 * x * x)
|
|
}
|
|
return 0
|
|
},
|
|
}
|
|
|
|
Bartlett = ResampleFilter{
|
|
Support: 3.0,
|
|
Kernel: func(x float64) float64 {
|
|
x = math.Abs(x)
|
|
if x < 3.0 {
|
|
return sinc(x) * (3.0 - x) / 3.0
|
|
}
|
|
return 0
|
|
},
|
|
}
|
|
|
|
Lanczos = ResampleFilter{
|
|
Support: 3.0,
|
|
Kernel: func(x float64) float64 {
|
|
x = math.Abs(x)
|
|
if x < 3.0 {
|
|
return sinc(x) * sinc(x/3.0)
|
|
}
|
|
return 0
|
|
},
|
|
}
|
|
|
|
Hann = ResampleFilter{
|
|
Support: 3.0,
|
|
Kernel: func(x float64) float64 {
|
|
x = math.Abs(x)
|
|
if x < 3.0 {
|
|
return sinc(x) * (0.5 + 0.5*math.Cos(math.Pi*x/3.0))
|
|
}
|
|
return 0
|
|
},
|
|
}
|
|
|
|
Hamming = ResampleFilter{
|
|
Support: 3.0,
|
|
Kernel: func(x float64) float64 {
|
|
x = math.Abs(x)
|
|
if x < 3.0 {
|
|
return sinc(x) * (0.54 + 0.46*math.Cos(math.Pi*x/3.0))
|
|
}
|
|
return 0
|
|
},
|
|
}
|
|
|
|
Blackman = ResampleFilter{
|
|
Support: 3.0,
|
|
Kernel: func(x float64) float64 {
|
|
x = math.Abs(x)
|
|
if x < 3.0 {
|
|
return sinc(x) * (0.42 - 0.5*math.Cos(math.Pi*x/3.0+math.Pi) + 0.08*math.Cos(2.0*math.Pi*x/3.0))
|
|
}
|
|
return 0
|
|
},
|
|
}
|
|
|
|
Welch = ResampleFilter{
|
|
Support: 3.0,
|
|
Kernel: func(x float64) float64 {
|
|
x = math.Abs(x)
|
|
if x < 3.0 {
|
|
return sinc(x) * (1.0 - (x * x / 9.0))
|
|
}
|
|
return 0
|
|
},
|
|
}
|
|
|
|
Cosine = ResampleFilter{
|
|
Support: 3.0,
|
|
Kernel: func(x float64) float64 {
|
|
x = math.Abs(x)
|
|
if x < 3.0 {
|
|
return sinc(x) * math.Cos((math.Pi/2.0)*(x/3.0))
|
|
}
|
|
return 0
|
|
},
|
|
}
|
|
}
|