0
Fork 0
mirror of https://github.com/willnorris/imageproxy.git synced 2025-01-20 22:53:00 -05:00
imageproxy/vendor/github.com/disintegration/imaging/resize.go
2015-11-26 12:41:45 -08:00

583 lines
13 KiB
Go

package imaging
import (
"image"
"math"
)
type iwpair struct {
i int
w int32
}
type pweights struct {
iwpairs []iwpair
wsum int32
}
func precomputeWeights(dstSize, srcSize int, filter ResampleFilter) []pweights {
du := float64(srcSize) / float64(dstSize)
scale := du
if scale < 1.0 {
scale = 1.0
}
ru := math.Ceil(scale * filter.Support)
out := make([]pweights, dstSize)
for v := 0; v < dstSize; v++ {
fu := (float64(v)+0.5)*du - 0.5
startu := int(math.Ceil(fu - ru))
if startu < 0 {
startu = 0
}
endu := int(math.Floor(fu + ru))
if endu > srcSize-1 {
endu = srcSize - 1
}
wsum := int32(0)
for u := startu; u <= endu; u++ {
w := int32(0xff * filter.Kernel((float64(u)-fu)/scale))
if w != 0 {
wsum += w
out[v].iwpairs = append(out[v].iwpairs, iwpair{u, w})
}
}
out[v].wsum = wsum
}
return out
}
// Resize resizes the image to the specified width and height using the specified resampling
// filter and returns the transformed image. If one of width or height is 0, the image aspect
// ratio is preserved.
//
// Supported resample filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali,
// CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine.
//
// Usage example:
//
// dstImage := imaging.Resize(srcImage, 800, 600, imaging.Lanczos)
//
func Resize(img image.Image, width, height int, filter ResampleFilter) *image.NRGBA {
dstW, dstH := width, height
if dstW < 0 || dstH < 0 {
return &image.NRGBA{}
}
if dstW == 0 && dstH == 0 {
return &image.NRGBA{}
}
src := toNRGBA(img)
srcW := src.Bounds().Max.X
srcH := src.Bounds().Max.Y
if srcW <= 0 || srcH <= 0 {
return &image.NRGBA{}
}
// if new width or height is 0 then preserve aspect ratio, minimum 1px
if dstW == 0 {
tmpW := float64(dstH) * float64(srcW) / float64(srcH)
dstW = int(math.Max(1.0, math.Floor(tmpW+0.5)))
}
if dstH == 0 {
tmpH := float64(dstW) * float64(srcH) / float64(srcW)
dstH = int(math.Max(1.0, math.Floor(tmpH+0.5)))
}
var dst *image.NRGBA
if filter.Support <= 0.0 {
// nearest-neighbor special case
dst = resizeNearest(src, dstW, dstH)
} else {
// two-pass resize
if srcW != dstW {
dst = resizeHorizontal(src, dstW, filter)
} else {
dst = src
}
if srcH != dstH {
dst = resizeVertical(dst, dstH, filter)
}
}
return dst
}
func resizeHorizontal(src *image.NRGBA, width int, filter ResampleFilter) *image.NRGBA {
srcBounds := src.Bounds()
srcW := srcBounds.Max.X
srcH := srcBounds.Max.Y
dstW := width
dstH := srcH
dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH))
weights := precomputeWeights(dstW, srcW, filter)
parallel(dstH, func(partStart, partEnd int) {
for dstY := partStart; dstY < partEnd; dstY++ {
for dstX := 0; dstX < dstW; dstX++ {
var c [4]int32
for _, iw := range weights[dstX].iwpairs {
i := dstY*src.Stride + iw.i*4
c[0] += int32(src.Pix[i+0]) * iw.w
c[1] += int32(src.Pix[i+1]) * iw.w
c[2] += int32(src.Pix[i+2]) * iw.w
c[3] += int32(src.Pix[i+3]) * iw.w
}
j := dstY*dst.Stride + dstX*4
sum := weights[dstX].wsum
dst.Pix[j+0] = clampint32(int32(float32(c[0])/float32(sum) + 0.5))
dst.Pix[j+1] = clampint32(int32(float32(c[1])/float32(sum) + 0.5))
dst.Pix[j+2] = clampint32(int32(float32(c[2])/float32(sum) + 0.5))
dst.Pix[j+3] = clampint32(int32(float32(c[3])/float32(sum) + 0.5))
}
}
})
return dst
}
func resizeVertical(src *image.NRGBA, height int, filter ResampleFilter) *image.NRGBA {
srcBounds := src.Bounds()
srcW := srcBounds.Max.X
srcH := srcBounds.Max.Y
dstW := srcW
dstH := height
dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH))
weights := precomputeWeights(dstH, srcH, filter)
parallel(dstW, func(partStart, partEnd int) {
for dstX := partStart; dstX < partEnd; dstX++ {
for dstY := 0; dstY < dstH; dstY++ {
var c [4]int32
for _, iw := range weights[dstY].iwpairs {
i := iw.i*src.Stride + dstX*4
c[0] += int32(src.Pix[i+0]) * iw.w
c[1] += int32(src.Pix[i+1]) * iw.w
c[2] += int32(src.Pix[i+2]) * iw.w
c[3] += int32(src.Pix[i+3]) * iw.w
}
j := dstY*dst.Stride + dstX*4
sum := weights[dstY].wsum
dst.Pix[j+0] = clampint32(int32(float32(c[0])/float32(sum) + 0.5))
dst.Pix[j+1] = clampint32(int32(float32(c[1])/float32(sum) + 0.5))
dst.Pix[j+2] = clampint32(int32(float32(c[2])/float32(sum) + 0.5))
dst.Pix[j+3] = clampint32(int32(float32(c[3])/float32(sum) + 0.5))
}
}
})
return dst
}
// fast nearest-neighbor resize, no filtering
func resizeNearest(src *image.NRGBA, width, height int) *image.NRGBA {
dstW, dstH := width, height
srcBounds := src.Bounds()
srcW := srcBounds.Max.X
srcH := srcBounds.Max.Y
dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH))
dx := float64(srcW) / float64(dstW)
dy := float64(srcH) / float64(dstH)
parallel(dstH, func(partStart, partEnd int) {
for dstY := partStart; dstY < partEnd; dstY++ {
fy := (float64(dstY)+0.5)*dy - 0.5
for dstX := 0; dstX < dstW; dstX++ {
fx := (float64(dstX)+0.5)*dx - 0.5
srcX := int(math.Min(math.Max(math.Floor(fx+0.5), 0.0), float64(srcW)))
srcY := int(math.Min(math.Max(math.Floor(fy+0.5), 0.0), float64(srcH)))
srcOff := srcY*src.Stride + srcX*4
dstOff := dstY*dst.Stride + dstX*4
copy(dst.Pix[dstOff:dstOff+4], src.Pix[srcOff:srcOff+4])
}
}
})
return dst
}
// Fit scales down the image using the specified resample filter to fit the specified
// maximum width and height and returns the transformed image.
//
// Supported resample filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali,
// CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine.
//
// Usage example:
//
// dstImage := imaging.Fit(srcImage, 800, 600, imaging.Lanczos)
//
func Fit(img image.Image, width, height int, filter ResampleFilter) *image.NRGBA {
maxW, maxH := width, height
if maxW <= 0 || maxH <= 0 {
return &image.NRGBA{}
}
srcBounds := img.Bounds()
srcW := srcBounds.Dx()
srcH := srcBounds.Dy()
if srcW <= 0 || srcH <= 0 {
return &image.NRGBA{}
}
if srcW <= maxW && srcH <= maxH {
return Clone(img)
}
srcAspectRatio := float64(srcW) / float64(srcH)
maxAspectRatio := float64(maxW) / float64(maxH)
var newW, newH int
if srcAspectRatio > maxAspectRatio {
newW = maxW
newH = int(float64(newW) / srcAspectRatio)
} else {
newH = maxH
newW = int(float64(newH) * srcAspectRatio)
}
return Resize(img, newW, newH, filter)
}
// Fill scales the image to the smallest possible size that will cover the specified dimensions,
// crops the resized image to the specified dimensions using the given anchor point and returns
// the transformed image.
//
// Supported resample filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali,
// CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine.
//
// Usage example:
//
// dstImage := imaging.Fill(srcImage, 800, 600, imaging.Center, imaging.Lanczos)
//
func Fill(img image.Image, width, height int, anchor Anchor, filter ResampleFilter) *image.NRGBA {
minW, minH := width, height
if minW <= 0 || minH <= 0 {
return &image.NRGBA{}
}
srcBounds := img.Bounds()
srcW := srcBounds.Dx()
srcH := srcBounds.Dy()
if srcW <= 0 || srcH <= 0 {
return &image.NRGBA{}
}
if srcW == minW && srcH == minH {
return Clone(img)
}
srcAspectRatio := float64(srcW) / float64(srcH)
minAspectRatio := float64(minW) / float64(minH)
var tmp *image.NRGBA
if srcAspectRatio < minAspectRatio {
tmp = Resize(img, minW, 0, filter)
} else {
tmp = Resize(img, 0, minH, filter)
}
return CropAnchor(tmp, minW, minH, anchor)
}
// Thumbnail scales the image up or down using the specified resample filter, crops it
// to the specified width and hight and returns the transformed image.
//
// Supported resample filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali,
// CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine.
//
// Usage example:
//
// dstImage := imaging.Thumbnail(srcImage, 100, 100, imaging.Lanczos)
//
func Thumbnail(img image.Image, width, height int, filter ResampleFilter) *image.NRGBA {
return Fill(img, width, height, Center, filter)
}
// Resample filter struct. It can be used to make custom filters.
//
// Supported resample filters: NearestNeighbor, Box, Linear, Hermite, MitchellNetravali,
// CatmullRom, BSpline, Gaussian, Lanczos, Hann, Hamming, Blackman, Bartlett, Welch, Cosine.
//
// General filter recommendations:
//
// - Lanczos
// Probably the best resampling filter for photographic images yielding sharp results,
// but it's slower than cubic filters (see below).
//
// - CatmullRom
// A sharp cubic filter. It's a good filter for both upscaling and downscaling if sharp results are needed.
//
// - MitchellNetravali
// A high quality cubic filter that produces smoother results with less ringing than CatmullRom.
//
// - BSpline
// A good filter if a very smooth output is needed.
//
// - Linear
// Bilinear interpolation filter, produces reasonably good, smooth output. It's faster than cubic filters.
//
// - Box
// Simple and fast resampling filter appropriate for downscaling.
// When upscaling it's similar to NearestNeighbor.
//
// - NearestNeighbor
// Fastest resample filter, no antialiasing at all. Rarely used.
//
type ResampleFilter struct {
Support float64
Kernel func(float64) float64
}
// Nearest-neighbor filter, no anti-aliasing.
var NearestNeighbor ResampleFilter
// Box filter (averaging pixels).
var Box ResampleFilter
// Linear filter.
var Linear ResampleFilter
// Hermite cubic spline filter (BC-spline; B=0; C=0).
var Hermite ResampleFilter
// Mitchell-Netravali cubic filter (BC-spline; B=1/3; C=1/3).
var MitchellNetravali ResampleFilter
// Catmull-Rom - sharp cubic filter (BC-spline; B=0; C=0.5).
var CatmullRom ResampleFilter
// Cubic B-spline - smooth cubic filter (BC-spline; B=1; C=0).
var BSpline ResampleFilter
// Gaussian Blurring Filter.
var Gaussian ResampleFilter
// Bartlett-windowed sinc filter (3 lobes).
var Bartlett ResampleFilter
// Lanczos filter (3 lobes).
var Lanczos ResampleFilter
// Hann-windowed sinc filter (3 lobes).
var Hann ResampleFilter
// Hamming-windowed sinc filter (3 lobes).
var Hamming ResampleFilter
// Blackman-windowed sinc filter (3 lobes).
var Blackman ResampleFilter
// Welch-windowed sinc filter (parabolic window, 3 lobes).
var Welch ResampleFilter
// Cosine-windowed sinc filter (3 lobes).
var Cosine ResampleFilter
func bcspline(x, b, c float64) float64 {
x = math.Abs(x)
if x < 1.0 {
return ((12-9*b-6*c)*x*x*x + (-18+12*b+6*c)*x*x + (6 - 2*b)) / 6
}
if x < 2.0 {
return ((-b-6*c)*x*x*x + (6*b+30*c)*x*x + (-12*b-48*c)*x + (8*b + 24*c)) / 6
}
return 0
}
func sinc(x float64) float64 {
if x == 0 {
return 1
}
return math.Sin(math.Pi*x) / (math.Pi * x)
}
func init() {
NearestNeighbor = ResampleFilter{
Support: 0.0, // special case - not applying the filter
}
Box = ResampleFilter{
Support: 0.5,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x <= 0.5 {
return 1.0
}
return 0
},
}
Linear = ResampleFilter{
Support: 1.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 1.0 {
return 1.0 - x
}
return 0
},
}
Hermite = ResampleFilter{
Support: 1.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 1.0 {
return bcspline(x, 0.0, 0.0)
}
return 0
},
}
MitchellNetravali = ResampleFilter{
Support: 2.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 2.0 {
return bcspline(x, 1.0/3.0, 1.0/3.0)
}
return 0
},
}
CatmullRom = ResampleFilter{
Support: 2.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 2.0 {
return bcspline(x, 0.0, 0.5)
}
return 0
},
}
BSpline = ResampleFilter{
Support: 2.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 2.0 {
return bcspline(x, 1.0, 0.0)
}
return 0
},
}
Gaussian = ResampleFilter{
Support: 2.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 2.0 {
return math.Exp(-2 * x * x)
}
return 0
},
}
Bartlett = ResampleFilter{
Support: 3.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 3.0 {
return sinc(x) * (3.0 - x) / 3.0
}
return 0
},
}
Lanczos = ResampleFilter{
Support: 3.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 3.0 {
return sinc(x) * sinc(x/3.0)
}
return 0
},
}
Hann = ResampleFilter{
Support: 3.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 3.0 {
return sinc(x) * (0.5 + 0.5*math.Cos(math.Pi*x/3.0))
}
return 0
},
}
Hamming = ResampleFilter{
Support: 3.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 3.0 {
return sinc(x) * (0.54 + 0.46*math.Cos(math.Pi*x/3.0))
}
return 0
},
}
Blackman = ResampleFilter{
Support: 3.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 3.0 {
return sinc(x) * (0.42 - 0.5*math.Cos(math.Pi*x/3.0+math.Pi) + 0.08*math.Cos(2.0*math.Pi*x/3.0))
}
return 0
},
}
Welch = ResampleFilter{
Support: 3.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 3.0 {
return sinc(x) * (1.0 - (x * x / 9.0))
}
return 0
},
}
Cosine = ResampleFilter{
Support: 3.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 3.0 {
return sinc(x) * math.Cos((math.Pi/2.0)*(x/3.0))
}
return 0
},
}
}