0
Fork 0
mirror of https://github.com/willnorris/imageproxy.git synced 2025-01-06 22:40:34 -05:00
imageproxy/vendor/google.golang.org/grpc/transport/http2_client.go
Will Norris 0fe3656939 vendor: add github.com/diegomarangoni/gcscache
also include all transitive dependencies of gcscache, which seems to
bring in the entire world of Google Cloud Platform.
2017-09-01 20:46:05 +00:00

1390 lines
39 KiB
Go

/*
*
* Copyright 2014 gRPC authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
package transport
import (
"bytes"
"io"
"math"
"net"
"strings"
"sync"
"sync/atomic"
"time"
"golang.org/x/net/context"
"golang.org/x/net/http2"
"golang.org/x/net/http2/hpack"
"google.golang.org/grpc/codes"
"google.golang.org/grpc/credentials"
"google.golang.org/grpc/keepalive"
"google.golang.org/grpc/metadata"
"google.golang.org/grpc/peer"
"google.golang.org/grpc/stats"
"google.golang.org/grpc/status"
)
// http2Client implements the ClientTransport interface with HTTP2.
type http2Client struct {
ctx context.Context
target string // server name/addr
userAgent string
md interface{}
conn net.Conn // underlying communication channel
remoteAddr net.Addr
localAddr net.Addr
authInfo credentials.AuthInfo // auth info about the connection
nextID uint32 // the next stream ID to be used
// writableChan synchronizes write access to the transport.
// A writer acquires the write lock by sending a value on writableChan
// and releases it by receiving from writableChan.
writableChan chan int
// shutdownChan is closed when Close is called.
// Blocking operations should select on shutdownChan to avoid
// blocking forever after Close.
// TODO(zhaoq): Maybe have a channel context?
shutdownChan chan struct{}
// errorChan is closed to notify the I/O error to the caller.
errorChan chan struct{}
// goAway is closed to notify the upper layer (i.e., addrConn.transportMonitor)
// that the server sent GoAway on this transport.
goAway chan struct{}
// awakenKeepalive is used to wake up keepalive when after it has gone dormant.
awakenKeepalive chan struct{}
framer *framer
hBuf *bytes.Buffer // the buffer for HPACK encoding
hEnc *hpack.Encoder // HPACK encoder
// controlBuf delivers all the control related tasks (e.g., window
// updates, reset streams, and various settings) to the controller.
controlBuf *controlBuffer
fc *inFlow
// sendQuotaPool provides flow control to outbound message.
sendQuotaPool *quotaPool
// streamsQuota limits the max number of concurrent streams.
streamsQuota *quotaPool
// The scheme used: https if TLS is on, http otherwise.
scheme string
isSecure bool
creds []credentials.PerRPCCredentials
// Boolean to keep track of reading activity on transport.
// 1 is true and 0 is false.
activity uint32 // Accessed atomically.
kp keepalive.ClientParameters
statsHandler stats.Handler
initialWindowSize int32
bdpEst *bdpEstimator
outQuotaVersion uint32
mu sync.Mutex // guard the following variables
state transportState // the state of underlying connection
activeStreams map[uint32]*Stream
// The max number of concurrent streams
maxStreams int
// the per-stream outbound flow control window size set by the peer.
streamSendQuota uint32
// prevGoAway ID records the Last-Stream-ID in the previous GOAway frame.
prevGoAwayID uint32
// goAwayReason records the http2.ErrCode and debug data received with the
// GoAway frame.
goAwayReason GoAwayReason
}
func dial(ctx context.Context, fn func(context.Context, string) (net.Conn, error), addr string) (net.Conn, error) {
if fn != nil {
return fn(ctx, addr)
}
return dialContext(ctx, "tcp", addr)
}
func isTemporary(err error) bool {
switch err {
case io.EOF:
// Connection closures may be resolved upon retry, and are thus
// treated as temporary.
return true
case context.DeadlineExceeded:
// In Go 1.7, context.DeadlineExceeded implements Timeout(), and this
// special case is not needed. Until then, we need to keep this
// clause.
return true
}
switch err := err.(type) {
case interface {
Temporary() bool
}:
return err.Temporary()
case interface {
Timeout() bool
}:
// Timeouts may be resolved upon retry, and are thus treated as
// temporary.
return err.Timeout()
}
return false
}
// newHTTP2Client constructs a connected ClientTransport to addr based on HTTP2
// and starts to receive messages on it. Non-nil error returns if construction
// fails.
func newHTTP2Client(ctx context.Context, addr TargetInfo, opts ConnectOptions) (_ ClientTransport, err error) {
scheme := "http"
conn, err := dial(ctx, opts.Dialer, addr.Addr)
if err != nil {
if opts.FailOnNonTempDialError {
return nil, connectionErrorf(isTemporary(err), err, "transport: error while dialing: %v", err)
}
return nil, connectionErrorf(true, err, "transport: Error while dialing %v", err)
}
// Any further errors will close the underlying connection
defer func(conn net.Conn) {
if err != nil {
conn.Close()
}
}(conn)
var (
isSecure bool
authInfo credentials.AuthInfo
)
if creds := opts.TransportCredentials; creds != nil {
scheme = "https"
conn, authInfo, err = creds.ClientHandshake(ctx, addr.Addr, conn)
if err != nil {
// Credentials handshake errors are typically considered permanent
// to avoid retrying on e.g. bad certificates.
temp := isTemporary(err)
return nil, connectionErrorf(temp, err, "transport: authentication handshake failed: %v", err)
}
isSecure = true
}
kp := opts.KeepaliveParams
// Validate keepalive parameters.
if kp.Time == 0 {
kp.Time = defaultClientKeepaliveTime
}
if kp.Timeout == 0 {
kp.Timeout = defaultClientKeepaliveTimeout
}
dynamicWindow := true
icwz := int32(initialWindowSize)
if opts.InitialConnWindowSize >= defaultWindowSize {
icwz = opts.InitialConnWindowSize
dynamicWindow = false
}
var buf bytes.Buffer
t := &http2Client{
ctx: ctx,
target: addr.Addr,
userAgent: opts.UserAgent,
md: addr.Metadata,
conn: conn,
remoteAddr: conn.RemoteAddr(),
localAddr: conn.LocalAddr(),
authInfo: authInfo,
// The client initiated stream id is odd starting from 1.
nextID: 1,
writableChan: make(chan int, 1),
shutdownChan: make(chan struct{}),
errorChan: make(chan struct{}),
goAway: make(chan struct{}),
awakenKeepalive: make(chan struct{}, 1),
framer: newFramer(conn),
hBuf: &buf,
hEnc: hpack.NewEncoder(&buf),
controlBuf: newControlBuffer(),
fc: &inFlow{limit: uint32(icwz)},
sendQuotaPool: newQuotaPool(defaultWindowSize),
scheme: scheme,
state: reachable,
activeStreams: make(map[uint32]*Stream),
isSecure: isSecure,
creds: opts.PerRPCCredentials,
maxStreams: defaultMaxStreamsClient,
streamsQuota: newQuotaPool(defaultMaxStreamsClient),
streamSendQuota: defaultWindowSize,
kp: kp,
statsHandler: opts.StatsHandler,
initialWindowSize: initialWindowSize,
}
if opts.InitialWindowSize >= defaultWindowSize {
t.initialWindowSize = opts.InitialWindowSize
dynamicWindow = false
}
if dynamicWindow {
t.bdpEst = &bdpEstimator{
bdp: initialWindowSize,
updateFlowControl: t.updateFlowControl,
}
}
// Make sure awakenKeepalive can't be written upon.
// keepalive routine will make it writable, if need be.
t.awakenKeepalive <- struct{}{}
if t.statsHandler != nil {
t.ctx = t.statsHandler.TagConn(t.ctx, &stats.ConnTagInfo{
RemoteAddr: t.remoteAddr,
LocalAddr: t.localAddr,
})
connBegin := &stats.ConnBegin{
Client: true,
}
t.statsHandler.HandleConn(t.ctx, connBegin)
}
// Start the reader goroutine for incoming message. Each transport has
// a dedicated goroutine which reads HTTP2 frame from network. Then it
// dispatches the frame to the corresponding stream entity.
go t.reader()
// Send connection preface to server.
n, err := t.conn.Write(clientPreface)
if err != nil {
t.Close()
return nil, connectionErrorf(true, err, "transport: failed to write client preface: %v", err)
}
if n != len(clientPreface) {
t.Close()
return nil, connectionErrorf(true, err, "transport: preface mismatch, wrote %d bytes; want %d", n, len(clientPreface))
}
if t.initialWindowSize != defaultWindowSize {
err = t.framer.writeSettings(true, http2.Setting{
ID: http2.SettingInitialWindowSize,
Val: uint32(t.initialWindowSize),
})
} else {
err = t.framer.writeSettings(true)
}
if err != nil {
t.Close()
return nil, connectionErrorf(true, err, "transport: failed to write initial settings frame: %v", err)
}
// Adjust the connection flow control window if needed.
if delta := uint32(icwz - defaultWindowSize); delta > 0 {
if err := t.framer.writeWindowUpdate(true, 0, delta); err != nil {
t.Close()
return nil, connectionErrorf(true, err, "transport: failed to write window update: %v", err)
}
}
go t.controller()
if t.kp.Time != infinity {
go t.keepalive()
}
t.writableChan <- 0
return t, nil
}
func (t *http2Client) newStream(ctx context.Context, callHdr *CallHdr) *Stream {
// TODO(zhaoq): Handle uint32 overflow of Stream.id.
s := &Stream{
id: t.nextID,
done: make(chan struct{}),
goAway: make(chan struct{}),
method: callHdr.Method,
sendCompress: callHdr.SendCompress,
buf: newRecvBuffer(),
fc: &inFlow{limit: uint32(t.initialWindowSize)},
sendQuotaPool: newQuotaPool(int(t.streamSendQuota)),
headerChan: make(chan struct{}),
}
t.nextID += 2
s.requestRead = func(n int) {
t.adjustWindow(s, uint32(n))
}
// The client side stream context should have exactly the same life cycle with the user provided context.
// That means, s.ctx should be read-only. And s.ctx is done iff ctx is done.
// So we use the original context here instead of creating a copy.
s.ctx = ctx
s.trReader = &transportReader{
reader: &recvBufferReader{
ctx: s.ctx,
goAway: s.goAway,
recv: s.buf,
},
windowHandler: func(n int) {
t.updateWindow(s, uint32(n))
},
}
return s
}
// NewStream creates a stream and registers it into the transport as "active"
// streams.
func (t *http2Client) NewStream(ctx context.Context, callHdr *CallHdr) (_ *Stream, err error) {
pr := &peer.Peer{
Addr: t.remoteAddr,
}
// Attach Auth info if there is any.
if t.authInfo != nil {
pr.AuthInfo = t.authInfo
}
ctx = peer.NewContext(ctx, pr)
var (
authData = make(map[string]string)
audience string
)
// Create an audience string only if needed.
if len(t.creds) > 0 || callHdr.Creds != nil {
// Construct URI required to get auth request metadata.
// Omit port if it is the default one.
host := strings.TrimSuffix(callHdr.Host, ":443")
pos := strings.LastIndex(callHdr.Method, "/")
if pos == -1 {
pos = len(callHdr.Method)
}
audience = "https://" + host + callHdr.Method[:pos]
}
for _, c := range t.creds {
data, err := c.GetRequestMetadata(ctx, audience)
if err != nil {
return nil, streamErrorf(codes.Internal, "transport: %v", err)
}
for k, v := range data {
// Capital header names are illegal in HTTP/2.
k = strings.ToLower(k)
authData[k] = v
}
}
callAuthData := make(map[string]string)
// Check if credentials.PerRPCCredentials were provided via call options.
// Note: if these credentials are provided both via dial options and call
// options, then both sets of credentials will be applied.
if callCreds := callHdr.Creds; callCreds != nil {
if !t.isSecure && callCreds.RequireTransportSecurity() {
return nil, streamErrorf(codes.Unauthenticated, "transport: cannot send secure credentials on an insecure conneciton")
}
data, err := callCreds.GetRequestMetadata(ctx, audience)
if err != nil {
return nil, streamErrorf(codes.Internal, "transport: %v", err)
}
for k, v := range data {
// Capital header names are illegal in HTTP/2
k = strings.ToLower(k)
callAuthData[k] = v
}
}
t.mu.Lock()
if t.activeStreams == nil {
t.mu.Unlock()
return nil, ErrConnClosing
}
if t.state == draining {
t.mu.Unlock()
return nil, ErrStreamDrain
}
if t.state != reachable {
t.mu.Unlock()
return nil, ErrConnClosing
}
t.mu.Unlock()
sq, err := wait(ctx, nil, nil, t.shutdownChan, t.streamsQuota.acquire())
if err != nil {
return nil, err
}
// Returns the quota balance back.
if sq > 1 {
t.streamsQuota.add(sq - 1)
}
if _, err := wait(ctx, nil, nil, t.shutdownChan, t.writableChan); err != nil {
// Return the quota back now because there is no stream returned to the caller.
if _, ok := err.(StreamError); ok {
t.streamsQuota.add(1)
}
return nil, err
}
t.mu.Lock()
if t.state == draining {
t.mu.Unlock()
t.streamsQuota.add(1)
// Need to make t writable again so that the rpc in flight can still proceed.
t.writableChan <- 0
return nil, ErrStreamDrain
}
if t.state != reachable {
t.mu.Unlock()
return nil, ErrConnClosing
}
s := t.newStream(ctx, callHdr)
t.activeStreams[s.id] = s
// If the number of active streams change from 0 to 1, then check if keepalive
// has gone dormant. If so, wake it up.
if len(t.activeStreams) == 1 {
select {
case t.awakenKeepalive <- struct{}{}:
t.framer.writePing(false, false, [8]byte{})
// Fill the awakenKeepalive channel again as this channel must be
// kept non-writable except at the point that the keepalive()
// goroutine is waiting either to be awaken or shutdown.
t.awakenKeepalive <- struct{}{}
default:
}
}
t.mu.Unlock()
// HPACK encodes various headers. Note that once WriteField(...) is
// called, the corresponding headers/continuation frame has to be sent
// because hpack.Encoder is stateful.
t.hBuf.Reset()
t.hEnc.WriteField(hpack.HeaderField{Name: ":method", Value: "POST"})
t.hEnc.WriteField(hpack.HeaderField{Name: ":scheme", Value: t.scheme})
t.hEnc.WriteField(hpack.HeaderField{Name: ":path", Value: callHdr.Method})
t.hEnc.WriteField(hpack.HeaderField{Name: ":authority", Value: callHdr.Host})
t.hEnc.WriteField(hpack.HeaderField{Name: "content-type", Value: "application/grpc"})
t.hEnc.WriteField(hpack.HeaderField{Name: "user-agent", Value: t.userAgent})
t.hEnc.WriteField(hpack.HeaderField{Name: "te", Value: "trailers"})
if callHdr.SendCompress != "" {
t.hEnc.WriteField(hpack.HeaderField{Name: "grpc-encoding", Value: callHdr.SendCompress})
}
if dl, ok := ctx.Deadline(); ok {
// Send out timeout regardless its value. The server can detect timeout context by itself.
timeout := dl.Sub(time.Now())
t.hEnc.WriteField(hpack.HeaderField{Name: "grpc-timeout", Value: encodeTimeout(timeout)})
}
for k, v := range authData {
t.hEnc.WriteField(hpack.HeaderField{Name: k, Value: encodeMetadataHeader(k, v)})
}
for k, v := range callAuthData {
t.hEnc.WriteField(hpack.HeaderField{Name: k, Value: encodeMetadataHeader(k, v)})
}
var (
endHeaders bool
)
if b := stats.OutgoingTags(ctx); b != nil {
t.hEnc.WriteField(hpack.HeaderField{Name: "grpc-tags-bin", Value: encodeBinHeader(b)})
}
if b := stats.OutgoingTrace(ctx); b != nil {
t.hEnc.WriteField(hpack.HeaderField{Name: "grpc-trace-bin", Value: encodeBinHeader(b)})
}
if md, ok := metadata.FromOutgoingContext(ctx); ok {
for k, vv := range md {
// HTTP doesn't allow you to set pseudoheaders after non pseudoheaders were set.
if isReservedHeader(k) {
continue
}
for _, v := range vv {
t.hEnc.WriteField(hpack.HeaderField{Name: k, Value: encodeMetadataHeader(k, v)})
}
}
}
if md, ok := t.md.(*metadata.MD); ok {
for k, vv := range *md {
if isReservedHeader(k) {
continue
}
for _, v := range vv {
t.hEnc.WriteField(hpack.HeaderField{Name: k, Value: encodeMetadataHeader(k, v)})
}
}
}
first := true
bufLen := t.hBuf.Len()
// Sends the headers in a single batch even when they span multiple frames.
for !endHeaders {
size := t.hBuf.Len()
if size > http2MaxFrameLen {
size = http2MaxFrameLen
} else {
endHeaders = true
}
var flush bool
if callHdr.Flush && endHeaders {
flush = true
}
if first {
// Sends a HeadersFrame to server to start a new stream.
p := http2.HeadersFrameParam{
StreamID: s.id,
BlockFragment: t.hBuf.Next(size),
EndStream: false,
EndHeaders: endHeaders,
}
// Do a force flush for the buffered frames iff it is the last headers frame
// and there is header metadata to be sent. Otherwise, there is flushing until
// the corresponding data frame is written.
err = t.framer.writeHeaders(flush, p)
first = false
} else {
// Sends Continuation frames for the leftover headers.
err = t.framer.writeContinuation(flush, s.id, endHeaders, t.hBuf.Next(size))
}
if err != nil {
t.notifyError(err)
return nil, connectionErrorf(true, err, "transport: %v", err)
}
}
s.mu.Lock()
s.bytesSent = true
s.mu.Unlock()
if t.statsHandler != nil {
outHeader := &stats.OutHeader{
Client: true,
WireLength: bufLen,
FullMethod: callHdr.Method,
RemoteAddr: t.remoteAddr,
LocalAddr: t.localAddr,
Compression: callHdr.SendCompress,
}
t.statsHandler.HandleRPC(s.ctx, outHeader)
}
t.writableChan <- 0
return s, nil
}
// CloseStream clears the footprint of a stream when the stream is not needed any more.
// This must not be executed in reader's goroutine.
func (t *http2Client) CloseStream(s *Stream, err error) {
t.mu.Lock()
if t.activeStreams == nil {
t.mu.Unlock()
return
}
if err != nil {
// notify in-flight streams, before the deletion
s.write(recvMsg{err: err})
}
delete(t.activeStreams, s.id)
if t.state == draining && len(t.activeStreams) == 0 {
// The transport is draining and s is the last live stream on t.
t.mu.Unlock()
t.Close()
return
}
t.mu.Unlock()
// rstStream is true in case the stream is being closed at the client-side
// and the server needs to be intimated about it by sending a RST_STREAM
// frame.
// To make sure this frame is written to the wire before the headers of the
// next stream waiting for streamsQuota, we add to streamsQuota pool only
// after having acquired the writableChan to send RST_STREAM out (look at
// the controller() routine).
var rstStream bool
var rstError http2.ErrCode
defer func() {
// In case, the client doesn't have to send RST_STREAM to server
// we can safely add back to streamsQuota pool now.
if !rstStream {
t.streamsQuota.add(1)
return
}
t.controlBuf.put(&resetStream{s.id, rstError})
}()
s.mu.Lock()
rstStream = s.rstStream
rstError = s.rstError
if s.state == streamDone {
s.mu.Unlock()
return
}
if !s.headerDone {
close(s.headerChan)
s.headerDone = true
}
s.state = streamDone
s.mu.Unlock()
if _, ok := err.(StreamError); ok {
rstStream = true
rstError = http2.ErrCodeCancel
}
}
// Close kicks off the shutdown process of the transport. This should be called
// only once on a transport. Once it is called, the transport should not be
// accessed any more.
func (t *http2Client) Close() (err error) {
t.mu.Lock()
if t.state == closing {
t.mu.Unlock()
return
}
if t.state == reachable || t.state == draining {
close(t.errorChan)
}
t.state = closing
t.mu.Unlock()
close(t.shutdownChan)
err = t.conn.Close()
t.mu.Lock()
streams := t.activeStreams
t.activeStreams = nil
t.mu.Unlock()
// Notify all active streams.
for _, s := range streams {
s.mu.Lock()
if !s.headerDone {
close(s.headerChan)
s.headerDone = true
}
s.mu.Unlock()
s.write(recvMsg{err: ErrConnClosing})
}
if t.statsHandler != nil {
connEnd := &stats.ConnEnd{
Client: true,
}
t.statsHandler.HandleConn(t.ctx, connEnd)
}
return
}
func (t *http2Client) GracefulClose() error {
t.mu.Lock()
switch t.state {
case unreachable:
// The server may close the connection concurrently. t is not available for
// any streams. Close it now.
t.mu.Unlock()
t.Close()
return nil
case closing:
t.mu.Unlock()
return nil
}
if t.state == draining {
t.mu.Unlock()
return nil
}
t.state = draining
active := len(t.activeStreams)
t.mu.Unlock()
if active == 0 {
return t.Close()
}
return nil
}
// Write formats the data into HTTP2 data frame(s) and sends it out. The caller
// should proceed only if Write returns nil.
// TODO(zhaoq): opts.Delay is ignored in this implementation. Support it later
// if it improves the performance.
func (t *http2Client) Write(s *Stream, hdr []byte, data []byte, opts *Options) error {
secondStart := http2MaxFrameLen - len(hdr)%http2MaxFrameLen
if len(data) < secondStart {
secondStart = len(data)
}
hdr = append(hdr, data[:secondStart]...)
data = data[secondStart:]
isLastSlice := (len(data) == 0)
r := bytes.NewBuffer(hdr)
var (
p []byte
oqv uint32
)
for {
oqv = atomic.LoadUint32(&t.outQuotaVersion)
if r.Len() > 0 || p != nil {
size := http2MaxFrameLen
// Wait until the stream has some quota to send the data.
sq, err := wait(s.ctx, s.done, s.goAway, t.shutdownChan, s.sendQuotaPool.acquire())
if err != nil {
return err
}
// Wait until the transport has some quota to send the data.
tq, err := wait(s.ctx, s.done, s.goAway, t.shutdownChan, t.sendQuotaPool.acquire())
if err != nil {
return err
}
if sq < size {
size = sq
}
if tq < size {
size = tq
}
if p == nil {
p = r.Next(size)
}
ps := len(p)
if ps < sq {
// Overbooked stream quota. Return it back.
s.sendQuotaPool.add(sq - ps)
}
if ps < tq {
// Overbooked transport quota. Return it back.
t.sendQuotaPool.add(tq - ps)
}
}
var (
endStream bool
forceFlush bool
)
// Indicate there is a writer who is about to write a data frame.
t.framer.adjustNumWriters(1)
// Got some quota. Try to acquire writing privilege on the transport.
if _, err := wait(s.ctx, s.done, s.goAway, t.shutdownChan, t.writableChan); err != nil {
if _, ok := err.(StreamError); ok || err == io.EOF {
// Return the connection quota back.
t.sendQuotaPool.add(len(p))
}
if t.framer.adjustNumWriters(-1) == 0 {
// This writer is the last one in this batch and has the
// responsibility to flush the buffered frames. It queues
// a flush request to controlBuf instead of flushing directly
// in order to avoid the race with other writing or flushing.
t.controlBuf.put(&flushIO{})
}
return err
}
select {
case <-s.ctx.Done():
t.sendQuotaPool.add(len(p))
if t.framer.adjustNumWriters(-1) == 0 {
t.controlBuf.put(&flushIO{})
}
t.writableChan <- 0
return ContextErr(s.ctx.Err())
default:
}
if oqv != atomic.LoadUint32(&t.outQuotaVersion) {
// InitialWindowSize settings frame must have been received after we
// acquired send quota but before we got the writable channel.
// We must forsake this write.
t.sendQuotaPool.add(len(p))
s.sendQuotaPool.add(len(p))
if t.framer.adjustNumWriters(-1) == 0 {
t.controlBuf.put(&flushIO{})
}
t.writableChan <- 0
continue
}
if r.Len() == 0 {
if isLastSlice {
if opts.Last {
endStream = true
}
if t.framer.adjustNumWriters(0) == 1 {
// Do a force flush iff this is last frame for the entire gRPC message
// and the caller is the only writer at this moment.
forceFlush = true
}
} else {
isLastSlice = true
if len(data) != 0 {
r = bytes.NewBuffer(data)
}
}
}
// If WriteData fails, all the pending streams will be handled
// by http2Client.Close(). No explicit CloseStream() needs to be
// invoked.
if err := t.framer.writeData(forceFlush, s.id, endStream, p); err != nil {
t.notifyError(err)
return connectionErrorf(true, err, "transport: %v", err)
}
p = nil
if t.framer.adjustNumWriters(-1) == 0 {
t.framer.flushWrite()
}
t.writableChan <- 0
if r.Len() == 0 {
break
}
}
if !opts.Last {
return nil
}
s.mu.Lock()
if s.state != streamDone {
s.state = streamWriteDone
}
s.mu.Unlock()
return nil
}
func (t *http2Client) getStream(f http2.Frame) (*Stream, bool) {
t.mu.Lock()
defer t.mu.Unlock()
s, ok := t.activeStreams[f.Header().StreamID]
return s, ok
}
// adjustWindow sends out extra window update over the initial window size
// of stream if the application is requesting data larger in size than
// the window.
func (t *http2Client) adjustWindow(s *Stream, n uint32) {
s.mu.Lock()
defer s.mu.Unlock()
if s.state == streamDone {
return
}
if w := s.fc.maybeAdjust(n); w > 0 {
// Piggyback conneciton's window update along.
if cw := t.fc.resetPendingUpdate(); cw > 0 {
t.controlBuf.put(&windowUpdate{0, cw, false})
}
t.controlBuf.put(&windowUpdate{s.id, w, true})
}
}
// updateWindow adjusts the inbound quota for the stream and the transport.
// Window updates will deliver to the controller for sending when
// the cumulative quota exceeds the corresponding threshold.
func (t *http2Client) updateWindow(s *Stream, n uint32) {
s.mu.Lock()
defer s.mu.Unlock()
if s.state == streamDone {
return
}
if w := s.fc.onRead(n); w > 0 {
if cw := t.fc.resetPendingUpdate(); cw > 0 {
t.controlBuf.put(&windowUpdate{0, cw, false})
}
t.controlBuf.put(&windowUpdate{s.id, w, true})
}
}
// updateFlowControl updates the incoming flow control windows
// for the transport and the stream based on the current bdp
// estimation.
func (t *http2Client) updateFlowControl(n uint32) {
t.mu.Lock()
for _, s := range t.activeStreams {
s.fc.newLimit(n)
}
t.initialWindowSize = int32(n)
t.mu.Unlock()
t.controlBuf.put(&windowUpdate{0, t.fc.newLimit(n), false})
t.controlBuf.put(&settings{
ack: false,
ss: []http2.Setting{
{
ID: http2.SettingInitialWindowSize,
Val: uint32(n),
},
},
})
}
func (t *http2Client) handleData(f *http2.DataFrame) {
size := f.Header().Length
var sendBDPPing bool
if t.bdpEst != nil {
sendBDPPing = t.bdpEst.add(uint32(size))
}
// Decouple connection's flow control from application's read.
// An update on connection's flow control should not depend on
// whether user application has read the data or not. Such a
// restriction is already imposed on the stream's flow control,
// and therefore the sender will be blocked anyways.
// Decoupling the connection flow control will prevent other
// active(fast) streams from starving in presence of slow or
// inactive streams.
//
// Furthermore, if a bdpPing is being sent out we can piggyback
// connection's window update for the bytes we just received.
if sendBDPPing {
t.controlBuf.put(&windowUpdate{0, uint32(size), false})
t.controlBuf.put(bdpPing)
} else {
if err := t.fc.onData(uint32(size)); err != nil {
t.notifyError(connectionErrorf(true, err, "%v", err))
return
}
if w := t.fc.onRead(uint32(size)); w > 0 {
t.controlBuf.put(&windowUpdate{0, w, true})
}
}
// Select the right stream to dispatch.
s, ok := t.getStream(f)
if !ok {
return
}
if size > 0 {
s.mu.Lock()
if s.state == streamDone {
s.mu.Unlock()
return
}
if err := s.fc.onData(uint32(size)); err != nil {
s.rstStream = true
s.rstError = http2.ErrCodeFlowControl
s.finish(status.New(codes.Internal, err.Error()))
s.mu.Unlock()
s.write(recvMsg{err: io.EOF})
return
}
if f.Header().Flags.Has(http2.FlagDataPadded) {
if w := s.fc.onRead(uint32(size) - uint32(len(f.Data()))); w > 0 {
t.controlBuf.put(&windowUpdate{s.id, w, true})
}
}
s.mu.Unlock()
// TODO(bradfitz, zhaoq): A copy is required here because there is no
// guarantee f.Data() is consumed before the arrival of next frame.
// Can this copy be eliminated?
if len(f.Data()) > 0 {
data := make([]byte, len(f.Data()))
copy(data, f.Data())
s.write(recvMsg{data: data})
}
}
// The server has closed the stream without sending trailers. Record that
// the read direction is closed, and set the status appropriately.
if f.FrameHeader.Flags.Has(http2.FlagDataEndStream) {
s.mu.Lock()
if s.state == streamDone {
s.mu.Unlock()
return
}
s.finish(status.New(codes.Internal, "server closed the stream without sending trailers"))
s.mu.Unlock()
s.write(recvMsg{err: io.EOF})
}
}
func (t *http2Client) handleRSTStream(f *http2.RSTStreamFrame) {
s, ok := t.getStream(f)
if !ok {
return
}
s.mu.Lock()
if s.state == streamDone {
s.mu.Unlock()
return
}
if !s.headerDone {
close(s.headerChan)
s.headerDone = true
}
statusCode, ok := http2ErrConvTab[http2.ErrCode(f.ErrCode)]
if !ok {
warningf("transport: http2Client.handleRSTStream found no mapped gRPC status for the received http2 error %v", f.ErrCode)
statusCode = codes.Unknown
}
s.finish(status.Newf(statusCode, "stream terminated by RST_STREAM with error code: %v", f.ErrCode))
s.mu.Unlock()
s.write(recvMsg{err: io.EOF})
}
func (t *http2Client) handleSettings(f *http2.SettingsFrame) {
if f.IsAck() {
return
}
var ss []http2.Setting
f.ForeachSetting(func(s http2.Setting) error {
ss = append(ss, s)
return nil
})
// The settings will be applied once the ack is sent.
t.controlBuf.put(&settings{ack: true, ss: ss})
}
func (t *http2Client) handlePing(f *http2.PingFrame) {
if f.IsAck() {
// Maybe it's a BDP ping.
if t.bdpEst != nil {
t.bdpEst.calculate(f.Data)
}
return
}
pingAck := &ping{ack: true}
copy(pingAck.data[:], f.Data[:])
t.controlBuf.put(pingAck)
}
func (t *http2Client) handleGoAway(f *http2.GoAwayFrame) {
t.mu.Lock()
if t.state != reachable && t.state != draining {
t.mu.Unlock()
return
}
if f.ErrCode == http2.ErrCodeEnhanceYourCalm {
infof("Client received GoAway with http2.ErrCodeEnhanceYourCalm.")
}
id := f.LastStreamID
if id > 0 && id%2 != 1 {
t.mu.Unlock()
t.notifyError(connectionErrorf(true, nil, "received illegal http2 GOAWAY frame: stream ID %d is even", f.LastStreamID))
return
}
// A client can recieve multiple GoAways from server (look at https://github.com/grpc/grpc-go/issues/1387).
// The idea is that the first GoAway will be sent with an ID of MaxInt32 and the second GoAway will be sent after an RTT delay
// with the ID of the last stream the server will process.
// Therefore, when we get the first GoAway we don't really close any streams. While in case of second GoAway we
// close all streams created after the second GoAwayId. This way streams that were in-flight while the GoAway from server
// was being sent don't get killed.
select {
case <-t.goAway: // t.goAway has been closed (i.e.,multiple GoAways).
// If there are multiple GoAways the first one should always have an ID greater than the following ones.
if id > t.prevGoAwayID {
t.mu.Unlock()
t.notifyError(connectionErrorf(true, nil, "received illegal http2 GOAWAY frame: previously recv GOAWAY frame with LastStramID %d, currently recv %d", id, f.LastStreamID))
return
}
default:
t.setGoAwayReason(f)
close(t.goAway)
t.state = draining
}
// All streams with IDs greater than the GoAwayId
// and smaller than the previous GoAway ID should be killed.
upperLimit := t.prevGoAwayID
if upperLimit == 0 { // This is the first GoAway Frame.
upperLimit = math.MaxUint32 // Kill all streams after the GoAway ID.
}
for streamID, stream := range t.activeStreams {
if streamID > id && streamID <= upperLimit {
close(stream.goAway)
}
}
t.prevGoAwayID = id
active := len(t.activeStreams)
t.mu.Unlock()
if active == 0 {
t.Close()
}
}
// setGoAwayReason sets the value of t.goAwayReason based
// on the GoAway frame received.
// It expects a lock on transport's mutext to be held by
// the caller.
func (t *http2Client) setGoAwayReason(f *http2.GoAwayFrame) {
t.goAwayReason = NoReason
switch f.ErrCode {
case http2.ErrCodeEnhanceYourCalm:
if string(f.DebugData()) == "too_many_pings" {
t.goAwayReason = TooManyPings
}
}
}
func (t *http2Client) GetGoAwayReason() GoAwayReason {
t.mu.Lock()
defer t.mu.Unlock()
return t.goAwayReason
}
func (t *http2Client) handleWindowUpdate(f *http2.WindowUpdateFrame) {
id := f.Header().StreamID
incr := f.Increment
if id == 0 {
t.sendQuotaPool.add(int(incr))
return
}
if s, ok := t.getStream(f); ok {
s.sendQuotaPool.add(int(incr))
}
}
// operateHeaders takes action on the decoded headers.
func (t *http2Client) operateHeaders(frame *http2.MetaHeadersFrame) {
s, ok := t.getStream(frame)
if !ok {
return
}
s.mu.Lock()
s.bytesReceived = true
s.mu.Unlock()
var state decodeState
if err := state.decodeResponseHeader(frame); err != nil {
s.mu.Lock()
if !s.headerDone {
close(s.headerChan)
s.headerDone = true
}
s.mu.Unlock()
s.write(recvMsg{err: err})
// Something wrong. Stops reading even when there is remaining.
return
}
endStream := frame.StreamEnded()
var isHeader bool
defer func() {
if t.statsHandler != nil {
if isHeader {
inHeader := &stats.InHeader{
Client: true,
WireLength: int(frame.Header().Length),
}
t.statsHandler.HandleRPC(s.ctx, inHeader)
} else {
inTrailer := &stats.InTrailer{
Client: true,
WireLength: int(frame.Header().Length),
}
t.statsHandler.HandleRPC(s.ctx, inTrailer)
}
}
}()
s.mu.Lock()
if !endStream {
s.recvCompress = state.encoding
}
if !s.headerDone {
if !endStream && len(state.mdata) > 0 {
s.header = state.mdata
}
close(s.headerChan)
s.headerDone = true
isHeader = true
}
if !endStream || s.state == streamDone {
s.mu.Unlock()
return
}
if len(state.mdata) > 0 {
s.trailer = state.mdata
}
s.finish(state.status())
s.mu.Unlock()
s.write(recvMsg{err: io.EOF})
}
func handleMalformedHTTP2(s *Stream, err error) {
s.mu.Lock()
if !s.headerDone {
close(s.headerChan)
s.headerDone = true
}
s.mu.Unlock()
s.write(recvMsg{err: err})
}
// reader runs as a separate goroutine in charge of reading data from network
// connection.
//
// TODO(zhaoq): currently one reader per transport. Investigate whether this is
// optimal.
// TODO(zhaoq): Check the validity of the incoming frame sequence.
func (t *http2Client) reader() {
// Check the validity of server preface.
frame, err := t.framer.readFrame()
if err != nil {
t.notifyError(err)
return
}
atomic.CompareAndSwapUint32(&t.activity, 0, 1)
sf, ok := frame.(*http2.SettingsFrame)
if !ok {
t.notifyError(err)
return
}
t.handleSettings(sf)
// loop to keep reading incoming messages on this transport.
for {
frame, err := t.framer.readFrame()
atomic.CompareAndSwapUint32(&t.activity, 0, 1)
if err != nil {
// Abort an active stream if the http2.Framer returns a
// http2.StreamError. This can happen only if the server's response
// is malformed http2.
if se, ok := err.(http2.StreamError); ok {
t.mu.Lock()
s := t.activeStreams[se.StreamID]
t.mu.Unlock()
if s != nil {
// use error detail to provide better err message
handleMalformedHTTP2(s, streamErrorf(http2ErrConvTab[se.Code], "%v", t.framer.errorDetail()))
}
continue
} else {
// Transport error.
t.notifyError(err)
return
}
}
switch frame := frame.(type) {
case *http2.MetaHeadersFrame:
t.operateHeaders(frame)
case *http2.DataFrame:
t.handleData(frame)
case *http2.RSTStreamFrame:
t.handleRSTStream(frame)
case *http2.SettingsFrame:
t.handleSettings(frame)
case *http2.PingFrame:
t.handlePing(frame)
case *http2.GoAwayFrame:
t.handleGoAway(frame)
case *http2.WindowUpdateFrame:
t.handleWindowUpdate(frame)
default:
errorf("transport: http2Client.reader got unhandled frame type %v.", frame)
}
}
}
func (t *http2Client) applySettings(ss []http2.Setting) {
for _, s := range ss {
switch s.ID {
case http2.SettingMaxConcurrentStreams:
// TODO(zhaoq): This is a hack to avoid significant refactoring of the
// code to deal with the unrealistic int32 overflow. Probably will try
// to find a better way to handle this later.
if s.Val > math.MaxInt32 {
s.Val = math.MaxInt32
}
t.mu.Lock()
ms := t.maxStreams
t.maxStreams = int(s.Val)
t.mu.Unlock()
t.streamsQuota.add(int(s.Val) - ms)
case http2.SettingInitialWindowSize:
t.mu.Lock()
for _, stream := range t.activeStreams {
// Adjust the sending quota for each stream.
stream.sendQuotaPool.add(int(s.Val) - int(t.streamSendQuota))
}
t.streamSendQuota = s.Val
t.mu.Unlock()
atomic.AddUint32(&t.outQuotaVersion, 1)
}
}
}
// controller running in a separate goroutine takes charge of sending control
// frames (e.g., window update, reset stream, setting, etc.) to the server.
func (t *http2Client) controller() {
for {
select {
case i := <-t.controlBuf.get():
t.controlBuf.load()
select {
case <-t.writableChan:
switch i := i.(type) {
case *windowUpdate:
t.framer.writeWindowUpdate(i.flush, i.streamID, i.increment)
case *settings:
if i.ack {
t.framer.writeSettingsAck(true)
t.applySettings(i.ss)
} else {
t.framer.writeSettings(true, i.ss...)
}
case *resetStream:
// If the server needs to be to intimated about stream closing,
// then we need to make sure the RST_STREAM frame is written to
// the wire before the headers of the next stream waiting on
// streamQuota. We ensure this by adding to the streamsQuota pool
// only after having acquired the writableChan to send RST_STREAM.
t.streamsQuota.add(1)
t.framer.writeRSTStream(true, i.streamID, i.code)
case *flushIO:
t.framer.flushWrite()
case *ping:
if !i.ack {
t.bdpEst.timesnap(i.data)
}
t.framer.writePing(true, i.ack, i.data)
default:
errorf("transport: http2Client.controller got unexpected item type %v\n", i)
}
t.writableChan <- 0
continue
case <-t.shutdownChan:
return
}
case <-t.shutdownChan:
return
}
}
}
// keepalive running in a separate goroutune makes sure the connection is alive by sending pings.
func (t *http2Client) keepalive() {
p := &ping{data: [8]byte{}}
timer := time.NewTimer(t.kp.Time)
for {
select {
case <-timer.C:
if atomic.CompareAndSwapUint32(&t.activity, 1, 0) {
timer.Reset(t.kp.Time)
continue
}
// Check if keepalive should go dormant.
t.mu.Lock()
if len(t.activeStreams) < 1 && !t.kp.PermitWithoutStream {
// Make awakenKeepalive writable.
<-t.awakenKeepalive
t.mu.Unlock()
select {
case <-t.awakenKeepalive:
// If the control gets here a ping has been sent
// need to reset the timer with keepalive.Timeout.
case <-t.shutdownChan:
return
}
} else {
t.mu.Unlock()
// Send ping.
t.controlBuf.put(p)
}
// By the time control gets here a ping has been sent one way or the other.
timer.Reset(t.kp.Timeout)
select {
case <-timer.C:
if atomic.CompareAndSwapUint32(&t.activity, 1, 0) {
timer.Reset(t.kp.Time)
continue
}
t.Close()
return
case <-t.shutdownChan:
if !timer.Stop() {
<-timer.C
}
return
}
case <-t.shutdownChan:
if !timer.Stop() {
<-timer.C
}
return
}
}
}
func (t *http2Client) Error() <-chan struct{} {
return t.errorChan
}
func (t *http2Client) GoAway() <-chan struct{} {
return t.goAway
}
func (t *http2Client) notifyError(err error) {
t.mu.Lock()
// make sure t.errorChan is closed only once.
if t.state == draining {
t.mu.Unlock()
t.Close()
return
}
if t.state == reachable {
t.state = unreachable
close(t.errorChan)
infof("transport: http2Client.notifyError got notified that the client transport was broken %v.", err)
}
t.mu.Unlock()
}