diff --git a/vendor/github.com/muesli/smartcrop/LICENSE b/vendor/github.com/muesli/smartcrop/LICENSE new file mode 100644 index 0000000..e3f7eef --- /dev/null +++ b/vendor/github.com/muesli/smartcrop/LICENSE @@ -0,0 +1,21 @@ +The MIT License (MIT) + +Copyright (c) 2014 Christian Muehlhaeuser + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. \ No newline at end of file diff --git a/vendor/github.com/muesli/smartcrop/README.md b/vendor/github.com/muesli/smartcrop/README.md new file mode 100644 index 0000000..279b4bb --- /dev/null +++ b/vendor/github.com/muesli/smartcrop/README.md @@ -0,0 +1,69 @@ +smartcrop +========= + +smartcrop finds good image crops for arbitrary sizes. It is a pure Go implementation, based on Jonas Wagner's [smartcrop.js](https://github.com/jwagner/smartcrop.js) + +![Example](./examples/gopher.jpg) +Image: [https://www.flickr.com/photos/usfwspacific/8182486789](https://www.flickr.com/photos/usfwspacific/8182486789) CC BY U.S. Fish & Wildlife + +![Example](./examples/goodtimes.jpg) +Image: [https://www.flickr.com/photos/endogamia/5682480447](https://www.flickr.com/photos/endogamia/5682480447) by N. Feans + +## Installation + +Make sure you have a working Go environment. See the [install instructions](http://golang.org/doc/install.html). + +To install smartcrop, simply run: + + go get github.com/muesli/smartcrop + +To compile it from source: + + cd $GOPATH/src/github.com/muesli/smartcrop + go get -u -v + go build && go test -v + +## Example +```go +package main + +import ( + "fmt" + "image" + _ "image/png" + "os" + + "github.com/muesli/smartcrop" +) + +func main() { + f, _ := os.Open("image.png") + img, _, _ := image.Decode(f) + + analyzer := smartcrop.NewAnalyzer() + topCrop, _ := analyzer.FindBestCrop(img, 250, 250) + + // The crop will have the requested aspect ratio, but you need to copy/scale it yourself + fmt.Printf("Top crop: %+v\n", topCrop) + + type SubImager interface { + SubImage(r image.Rectangle) image.Image + } + croppedimg := img.(SubImager).SubImage(topCrop) + ... +} +``` + +Also see the test cases in smartcrop_test.go for further working examples. + +## Sample Data +You can find a bunch of test images for the algorithm [here](https://github.com/muesli/smartcrop-samples). + +## Development +API docs can be found [here](http://godoc.org/github.com/muesli/smartcrop). + +Join us on IRC: irc.freenode.net/#smartcrop + +[![Build Status](https://travis-ci.org/muesli/smartcrop.svg?branch=master)](https://travis-ci.org/muesli/smartcrop) +[![Coverage Status](https://coveralls.io/repos/github/muesli/smartcrop/badge.svg?branch=master)](https://coveralls.io/github/muesli/smartcrop?branch=master) +[![Go ReportCard](http://goreportcard.com/badge/muesli/smartcrop)](http://goreportcard.com/report/muesli/smartcrop) diff --git a/vendor/github.com/muesli/smartcrop/debug.go b/vendor/github.com/muesli/smartcrop/debug.go new file mode 100644 index 0000000..031b1fe --- /dev/null +++ b/vendor/github.com/muesli/smartcrop/debug.go @@ -0,0 +1,107 @@ +/* + * Copyright (c) 2014 Christian Muehlhaeuser + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + * + * Authors: + * Christian Muehlhaeuser + * Michael Wendland + */ + +/* +Package smartcrop implements a content aware image cropping library based on +Jonas Wagner's smartcrop.js https://github.com/jwagner/smartcrop.js +*/ +package smartcrop + +import ( + "errors" + "image" + "image/color" + "image/jpeg" + "image/png" + "os" + "path/filepath" +) + +func debugOutput(debug bool, img *image.RGBA, debugType string) { + if debug { + writeImage("png", img, "./smartcrop_"+debugType+".png") + } +} + +func writeImage(imgtype string, img image.Image, name string) error { + if err := os.MkdirAll(filepath.Dir(name), 0755); err != nil { + panic(err) + } + + switch imgtype { + case "png": + return writeImageToPng(img, name) + case "jpeg": + return writeImageToJpeg(img, name) + } + + return errors.New("Unknown image type") +} + +func writeImageToJpeg(img image.Image, name string) error { + fso, err := os.Create(name) + if err != nil { + return err + } + defer fso.Close() + + return jpeg.Encode(fso, img, &jpeg.Options{Quality: 100}) +} + +func writeImageToPng(img image.Image, name string) error { + fso, err := os.Create(name) + if err != nil { + return err + } + defer fso.Close() + + return png.Encode(fso, img) +} + +func drawDebugCrop(topCrop Crop, o *image.RGBA) { + width := o.Bounds().Dx() + height := o.Bounds().Dy() + + for y := 0; y < height; y++ { + for x := 0; x < width; x++ { + r, g, b, _ := o.At(x, y).RGBA() + r8 := float64(r >> 8) + g8 := float64(g >> 8) + b8 := uint8(b >> 8) + + imp := importance(topCrop, x, y) + + if imp > 0 { + g8 += imp * 32 + } else if imp < 0 { + r8 += imp * -64 + } + + nc := color.RGBA{uint8(bounds(r8)), uint8(bounds(g8)), b8, 255} + o.SetRGBA(x, y, nc) + } + } +} diff --git a/vendor/github.com/muesli/smartcrop/smartcrop.go b/vendor/github.com/muesli/smartcrop/smartcrop.go new file mode 100644 index 0000000..e0df8a7 --- /dev/null +++ b/vendor/github.com/muesli/smartcrop/smartcrop.go @@ -0,0 +1,482 @@ +/* + * Copyright (c) 2014-2017 Christian Muehlhaeuser + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + * + * Authors: + * Christian Muehlhaeuser + * Michael Wendland + */ + +/* +Package smartcrop implements a content aware image cropping library based on +Jonas Wagner's smartcrop.js https://github.com/jwagner/smartcrop.js +*/ +package smartcrop + +import ( + "errors" + "image" + "image/color" + "io/ioutil" + "log" + "math" + "time" + + "golang.org/x/image/draw" + + "github.com/nfnt/resize" +) + +var ( + // ErrInvalidDimensions gets returned when the supplied dimensions are invalid + ErrInvalidDimensions = errors.New("Expect either a height or width") + + skinColor = [3]float64{0.78, 0.57, 0.44} +) + +const ( + detailWeight = 0.2 + skinBias = 0.01 + skinBrightnessMin = 0.2 + skinBrightnessMax = 1.0 + skinThreshold = 0.8 + skinWeight = 1.8 + saturationBrightnessMin = 0.05 + saturationBrightnessMax = 0.9 + saturationThreshold = 0.4 + saturationBias = 0.2 + saturationWeight = 0.3 + scoreDownSample = 8 // step * minscale rounded down to the next power of two should be good + step = 8 + scaleStep = 0.1 + minScale = 0.9 + maxScale = 1.0 + edgeRadius = 0.4 + edgeWeight = -20.0 + outsideImportance = -0.5 + ruleOfThirds = true + prescale = true + prescaleMin = 400.00 +) + +// Analyzer interface analyzes its struct and returns the best possible crop with the given +// width and height returns an error if invalid +type Analyzer interface { + FindBestCrop(img image.Image, width, height int) (image.Rectangle, error) +} + +// Score contains values that classify matches +type Score struct { + Detail float64 + Saturation float64 + Skin float64 +} + +// Crop contains results +type Crop struct { + image.Rectangle + Score Score +} + +// CropSettings contains options to change cropping behaviour +type CropSettings struct { + InterpolationType resize.InterpolationFunction + DebugMode bool + Log *log.Logger +} + +type smartcropAnalyzer struct { + cropSettings CropSettings +} + +// NewAnalyzer returns a new analyzer with default settings +func NewAnalyzer() Analyzer { + cropSettings := CropSettings{ + InterpolationType: resize.Bicubic, + DebugMode: false, + } + + return NewAnalyzerWithCropSettings(cropSettings) +} + +// NewAnalyzerWithCropSettings returns a new analyzer with the given settings +func NewAnalyzerWithCropSettings(cropSettings CropSettings) Analyzer { + if cropSettings.Log == nil { + cropSettings.Log = log.New(ioutil.Discard, "", 0) + } + return &smartcropAnalyzer{cropSettings: cropSettings} +} + +func (o smartcropAnalyzer) FindBestCrop(img image.Image, width, height int) (image.Rectangle, error) { + if width == 0 && height == 0 { + return image.Rectangle{}, ErrInvalidDimensions + } + + // resize image for faster processing + scale := math.Min(float64(img.Bounds().Dx())/float64(width), float64(img.Bounds().Dy())/float64(height)) + var lowimg *image.RGBA + var prescalefactor = 1.0 + + if prescale { + // if f := 1.0 / scale / minScale; f < 1.0 { + // prescalefactor = f + // } + if f := prescaleMin / math.Min(float64(img.Bounds().Dx()), float64(img.Bounds().Dy())); f < 1.0 { + prescalefactor = f + } + o.cropSettings.Log.Println(prescalefactor) + + smallimg := resize.Resize( + uint(float64(img.Bounds().Dx())*prescalefactor), + 0, + img, + o.cropSettings.InterpolationType) + lowimg = toRGBA(smallimg) + } else { + lowimg = toRGBA(img) + } + + if o.cropSettings.DebugMode { + writeImage("png", lowimg, "./smartcrop_prescale.png") + } + + cropWidth, cropHeight := chop(float64(width)*scale*prescalefactor), chop(float64(height)*scale*prescalefactor) + realMinScale := math.Min(maxScale, math.Max(1.0/scale, minScale)) + + o.cropSettings.Log.Printf("original resolution: %dx%d\n", img.Bounds().Dx(), img.Bounds().Dy()) + o.cropSettings.Log.Printf("scale: %f, cropw: %f, croph: %f, minscale: %f\n", scale, cropWidth, cropHeight, realMinScale) + + topCrop, err := analyse(o.cropSettings, lowimg, cropWidth, cropHeight, realMinScale) + if err != nil { + return topCrop, err + } + + if prescale == true { + topCrop.Min.X = int(chop(float64(topCrop.Min.X) / prescalefactor)) + topCrop.Min.Y = int(chop(float64(topCrop.Min.Y) / prescalefactor)) + topCrop.Max.X = int(chop(float64(topCrop.Max.X) / prescalefactor)) + topCrop.Max.Y = int(chop(float64(topCrop.Max.Y) / prescalefactor)) + } + + return topCrop.Canon(), nil +} + +func (c Crop) totalScore() float64 { + return (c.Score.Detail*detailWeight + c.Score.Skin*skinWeight + c.Score.Saturation*saturationWeight) / float64(c.Dx()) / float64(c.Dy()) +} + +func chop(x float64) float64 { + if x < 0 { + return math.Ceil(x) + } + return math.Floor(x) +} + +func thirds(x float64) float64 { + x = (math.Mod(x-(1.0/3.0)+1.0, 2.0)*0.5 - 0.5) * 16.0 + return math.Max(1.0-x*x, 0.0) +} + +func bounds(l float64) float64 { + return math.Min(math.Max(l, 0.0), 255) +} + +func importance(crop Crop, x, y int) float64 { + if crop.Min.X > x || x >= crop.Max.X || crop.Min.Y > y || y >= crop.Max.Y { + return outsideImportance + } + + xf := float64(x-crop.Min.X) / float64(crop.Dx()) + yf := float64(y-crop.Min.Y) / float64(crop.Dy()) + + px := math.Abs(0.5-xf) * 2.0 + py := math.Abs(0.5-yf) * 2.0 + + dx := math.Max(px-1.0+edgeRadius, 0.0) + dy := math.Max(py-1.0+edgeRadius, 0.0) + d := (dx*dx + dy*dy) * edgeWeight + + s := 1.41 - math.Sqrt(px*px+py*py) + if ruleOfThirds { + s += (math.Max(0.0, s+d+0.5) * 1.2) * (thirds(px) + thirds(py)) + } + + return s + d +} + +func score(output *image.RGBA, crop Crop) Score { + width := output.Bounds().Dx() + height := output.Bounds().Dy() + score := Score{} + + // same loops but with downsampling + //for y := 0; y < height; y++ { + //for x := 0; x < width; x++ { + for y := 0; y <= height-scoreDownSample; y += scoreDownSample { + for x := 0; x <= width-scoreDownSample; x += scoreDownSample { + + c := output.RGBAAt(x, y) + r8 := float64(c.R) + g8 := float64(c.G) + b8 := float64(c.B) + + imp := importance(crop, int(x), int(y)) + det := g8 / 255.0 + + score.Skin += r8 / 255.0 * (det + skinBias) * imp + score.Detail += det * imp + score.Saturation += b8 / 255.0 * (det + saturationBias) * imp + } + } + + return score +} + +func analyse(settings CropSettings, img *image.RGBA, cropWidth, cropHeight, realMinScale float64) (image.Rectangle, error) { + o := image.NewRGBA(img.Bounds()) + + now := time.Now() + edgeDetect(img, o) + settings.Log.Println("Time elapsed edge:", time.Since(now)) + debugOutput(settings.DebugMode, o, "edge") + + now = time.Now() + skinDetect(img, o) + settings.Log.Println("Time elapsed skin:", time.Since(now)) + debugOutput(settings.DebugMode, o, "skin") + + now = time.Now() + saturationDetect(img, o) + settings.Log.Println("Time elapsed sat:", time.Since(now)) + debugOutput(settings.DebugMode, o, "saturation") + + now = time.Now() + var topCrop Crop + topScore := -1.0 + cs := crops(o, cropWidth, cropHeight, realMinScale) + settings.Log.Println("Time elapsed crops:", time.Since(now), len(cs)) + + now = time.Now() + for _, crop := range cs { + nowIn := time.Now() + crop.Score = score(o, crop) + settings.Log.Println("Time elapsed single-score:", time.Since(nowIn)) + if crop.totalScore() > topScore { + topCrop = crop + topScore = crop.totalScore() + } + } + settings.Log.Println("Time elapsed score:", time.Since(now)) + + if settings.DebugMode { + drawDebugCrop(topCrop, o) + debugOutput(true, o, "final") + } + + return topCrop.Rectangle, nil +} + +func saturation(c color.RGBA) float64 { + cMax, cMin := uint8(0), uint8(255) + if c.R > cMax { + cMax = c.R + } + if c.R < cMin { + cMin = c.R + } + if c.G > cMax { + cMax = c.G + } + if c.G < cMin { + cMin = c.G + } + if c.B > cMax { + cMax = c.B + } + if c.B < cMin { + cMin = c.B + } + + if cMax == cMin { + return 0 + } + maximum := float64(cMax) / 255.0 + minimum := float64(cMin) / 255.0 + + l := (maximum + minimum) / 2.0 + d := maximum - minimum + + if l > 0.5 { + return d / (2.0 - maximum - minimum) + } + + return d / (maximum + minimum) +} + +func cie(c color.RGBA) float64 { + return 0.5126*float64(c.B) + 0.7152*float64(c.G) + 0.0722*float64(c.R) +} + +func skinCol(c color.RGBA) float64 { + r8, g8, b8 := float64(c.R), float64(c.G), float64(c.B) + + mag := math.Sqrt(r8*r8 + g8*g8 + b8*b8) + rd := r8/mag - skinColor[0] + gd := g8/mag - skinColor[1] + bd := b8/mag - skinColor[2] + + d := math.Sqrt(rd*rd + gd*gd + bd*bd) + return 1.0 - d +} + +func makeCies(img *image.RGBA) []float64 { + width := img.Bounds().Dx() + height := img.Bounds().Dy() + cies := make([]float64, width*height, width*height) + i := 0 + for y := 0; y < height; y++ { + for x := 0; x < width; x++ { + cies[i] = cie(img.RGBAAt(x, y)) + i++ + } + } + + return cies +} + +func edgeDetect(i *image.RGBA, o *image.RGBA) { + width := i.Bounds().Dx() + height := i.Bounds().Dy() + cies := makeCies(i) + + var lightness float64 + for y := 0; y < height; y++ { + for x := 0; x < width; x++ { + if x == 0 || x >= width-1 || y == 0 || y >= height-1 { + //lightness = cie((*i).At(x, y)) + lightness = 0 + } else { + lightness = cies[y*width+x]*4.0 - + cies[x+(y-1)*width] - + cies[x-1+y*width] - + cies[x+1+y*width] - + cies[x+(y+1)*width] + } + + nc := color.RGBA{0, uint8(bounds(lightness)), 0, 255} + o.SetRGBA(x, y, nc) + } + } +} + +func skinDetect(i *image.RGBA, o *image.RGBA) { + width := i.Bounds().Dx() + height := i.Bounds().Dy() + + for y := 0; y < height; y++ { + for x := 0; x < width; x++ { + lightness := cie(i.RGBAAt(x, y)) / 255.0 + skin := skinCol(i.RGBAAt(x, y)) + + c := o.RGBAAt(x, y) + if skin > skinThreshold && lightness >= skinBrightnessMin && lightness <= skinBrightnessMax { + r := (skin - skinThreshold) * (255.0 / (1.0 - skinThreshold)) + nc := color.RGBA{uint8(bounds(r)), c.G, c.B, 255} + o.SetRGBA(x, y, nc) + } else { + nc := color.RGBA{0, c.G, c.B, 255} + o.SetRGBA(x, y, nc) + } + } + } +} + +func saturationDetect(i *image.RGBA, o *image.RGBA) { + width := i.Bounds().Dx() + height := i.Bounds().Dy() + + for y := 0; y < height; y++ { + for x := 0; x < width; x++ { + lightness := cie(i.RGBAAt(x, y)) / 255.0 + saturation := saturation(i.RGBAAt(x, y)) + + c := o.RGBAAt(x, y) + if saturation > saturationThreshold && lightness >= saturationBrightnessMin && lightness <= saturationBrightnessMax { + b := (saturation - saturationThreshold) * (255.0 / (1.0 - saturationThreshold)) + nc := color.RGBA{c.R, c.G, uint8(bounds(b)), 255} + o.SetRGBA(x, y, nc) + } else { + nc := color.RGBA{c.R, c.G, 0, 255} + o.SetRGBA(x, y, nc) + } + } + } +} + +func crops(i image.Image, cropWidth, cropHeight, realMinScale float64) []Crop { + res := []Crop{} + width := i.Bounds().Dx() + height := i.Bounds().Dy() + + minDimension := math.Min(float64(width), float64(height)) + var cropW, cropH float64 + + if cropWidth != 0.0 { + cropW = cropWidth + } else { + cropW = minDimension + } + if cropHeight != 0.0 { + cropH = cropHeight + } else { + cropH = minDimension + } + + for scale := maxScale; scale >= realMinScale; scale -= scaleStep { + for y := 0; float64(y)+cropH*scale <= float64(height); y += step { + for x := 0; float64(x)+cropW*scale <= float64(width); x += step { + res = append(res, Crop{ + Rectangle: image.Rect(x, y, x+int(cropW*scale), y+int(cropH*scale)), + }) + } + } + } + + return res +} + +// toRGBA converts an image.Image to an image.RGBA +func toRGBA(img image.Image) *image.RGBA { + switch img.(type) { + case *image.RGBA: + return img.(*image.RGBA) + } + out := image.NewRGBA(img.Bounds()) + draw.Copy(out, image.Pt(0, 0), img, img.Bounds(), draw.Src, nil) + return out +} + +// SmartCrop applies the smartcrop algorithms on the the given image and returns +// the top crop or an error if something went wrong. +// This is still here for legacy/backwards-compat reasons +func SmartCrop(img image.Image, width, height int) (image.Rectangle, error) { + analyzer := NewAnalyzer() + return analyzer.FindBestCrop(img, width, height) +} diff --git a/vendor/github.com/nfnt/resize/LICENSE b/vendor/github.com/nfnt/resize/LICENSE new file mode 100644 index 0000000..7836cad --- /dev/null +++ b/vendor/github.com/nfnt/resize/LICENSE @@ -0,0 +1,13 @@ +Copyright (c) 2012, Jan Schlicht + +Permission to use, copy, modify, and/or distribute this software for any purpose +with or without fee is hereby granted, provided that the above copyright notice +and this permission notice appear in all copies. + +THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH +REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND +FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, +INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS +OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER +TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF +THIS SOFTWARE. diff --git a/vendor/github.com/nfnt/resize/README.md b/vendor/github.com/nfnt/resize/README.md new file mode 100644 index 0000000..2aefa75 --- /dev/null +++ b/vendor/github.com/nfnt/resize/README.md @@ -0,0 +1,149 @@ +Resize +====== + +Image resizing for the [Go programming language](http://golang.org) with common interpolation methods. + +[![Build Status](https://travis-ci.org/nfnt/resize.svg)](https://travis-ci.org/nfnt/resize) + +Installation +------------ + +```bash +$ go get github.com/nfnt/resize +``` + +It's that easy! + +Usage +----- + +This package needs at least Go 1.1. Import package with + +```go +import "github.com/nfnt/resize" +``` + +The resize package provides 2 functions: + +* `resize.Resize` creates a scaled image with new dimensions (`width`, `height`) using the interpolation function `interp`. + If either `width` or `height` is set to 0, it will be set to an aspect ratio preserving value. +* `resize.Thumbnail` downscales an image preserving its aspect ratio to the maximum dimensions (`maxWidth`, `maxHeight`). + It will return the original image if original sizes are smaller than the provided dimensions. + +```go +resize.Resize(width, height uint, img image.Image, interp resize.InterpolationFunction) image.Image +resize.Thumbnail(maxWidth, maxHeight uint, img image.Image, interp resize.InterpolationFunction) image.Image +``` + +The provided interpolation functions are (from fast to slow execution time) + +- `NearestNeighbor`: [Nearest-neighbor interpolation](http://en.wikipedia.org/wiki/Nearest-neighbor_interpolation) +- `Bilinear`: [Bilinear interpolation](http://en.wikipedia.org/wiki/Bilinear_interpolation) +- `Bicubic`: [Bicubic interpolation](http://en.wikipedia.org/wiki/Bicubic_interpolation) +- `MitchellNetravali`: [Mitchell-Netravali interpolation](http://dl.acm.org/citation.cfm?id=378514) +- `Lanczos2`: [Lanczos resampling](http://en.wikipedia.org/wiki/Lanczos_resampling) with a=2 +- `Lanczos3`: [Lanczos resampling](http://en.wikipedia.org/wiki/Lanczos_resampling) with a=3 + +Which of these methods gives the best results depends on your use case. + +Sample usage: + +```go +package main + +import ( + "github.com/nfnt/resize" + "image/jpeg" + "log" + "os" +) + +func main() { + // open "test.jpg" + file, err := os.Open("test.jpg") + if err != nil { + log.Fatal(err) + } + + // decode jpeg into image.Image + img, err := jpeg.Decode(file) + if err != nil { + log.Fatal(err) + } + file.Close() + + // resize to width 1000 using Lanczos resampling + // and preserve aspect ratio + m := resize.Resize(1000, 0, img, resize.Lanczos3) + + out, err := os.Create("test_resized.jpg") + if err != nil { + log.Fatal(err) + } + defer out.Close() + + // write new image to file + jpeg.Encode(out, m, nil) +} +``` + +Caveats +------- + +* Optimized access routines are used for `image.RGBA`, `image.NRGBA`, `image.RGBA64`, `image.NRGBA64`, `image.YCbCr`, `image.Gray`, and `image.Gray16` types. All other image types are accessed in a generic way that will result in slow processing speed. +* JPEG images are stored in `image.YCbCr`. This image format stores data in a way that will decrease processing speed. A resize may be up to 2 times slower than with `image.RGBA`. + + +Downsizing Samples +------- + +Downsizing is not as simple as it might look like. Images have to be filtered before they are scaled down, otherwise aliasing might occur. +Filtering is highly subjective: Applying too much will blur the whole image, too little will make aliasing become apparent. +Resize tries to provide sane defaults that should suffice in most cases. + +### Artificial sample + +Original image +![Rings](http://nfnt.github.com/img/rings_lg_orig.png) + + + + + + + + + + + + + + +

Nearest-Neighbor

Bilinear

Bicubic

Mitchell-Netravali

Lanczos2

Lanczos3
+ +### Real-Life sample + +Original image +![Original](http://nfnt.github.com/img/IMG_3694_720.jpg) + + + + + + + + + + + + + + +

Nearest-Neighbor

Bilinear

Bicubic

Mitchell-Netravali

Lanczos2

Lanczos3
+ + +License +------- + +Copyright (c) 2012 Jan Schlicht +Resize is released under a MIT style license. diff --git a/vendor/github.com/nfnt/resize/converter.go b/vendor/github.com/nfnt/resize/converter.go new file mode 100644 index 0000000..f9c520d --- /dev/null +++ b/vendor/github.com/nfnt/resize/converter.go @@ -0,0 +1,438 @@ +/* +Copyright (c) 2012, Jan Schlicht + +Permission to use, copy, modify, and/or distribute this software for any purpose +with or without fee is hereby granted, provided that the above copyright notice +and this permission notice appear in all copies. + +THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH +REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND +FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, +INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS +OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER +TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF +THIS SOFTWARE. +*/ + +package resize + +import "image" + +// Keep value in [0,255] range. +func clampUint8(in int32) uint8 { + // casting a negative int to an uint will result in an overflown + // large uint. this behavior will be exploited here and in other functions + // to achieve a higher performance. + if uint32(in) < 256 { + return uint8(in) + } + if in > 255 { + return 255 + } + return 0 +} + +// Keep value in [0,65535] range. +func clampUint16(in int64) uint16 { + if uint64(in) < 65536 { + return uint16(in) + } + if in > 65535 { + return 65535 + } + return 0 +} + +func resizeGeneric(in image.Image, out *image.RGBA64, scale float64, coeffs []int32, offset []int, filterLength int) { + newBounds := out.Bounds() + maxX := in.Bounds().Dx() - 1 + + for x := newBounds.Min.X; x < newBounds.Max.X; x++ { + for y := newBounds.Min.Y; y < newBounds.Max.Y; y++ { + var rgba [4]int64 + var sum int64 + start := offset[y] + ci := y * filterLength + for i := 0; i < filterLength; i++ { + coeff := coeffs[ci+i] + if coeff != 0 { + xi := start + i + switch { + case xi < 0: + xi = 0 + case xi >= maxX: + xi = maxX + } + + r, g, b, a := in.At(xi+in.Bounds().Min.X, x+in.Bounds().Min.Y).RGBA() + + rgba[0] += int64(coeff) * int64(r) + rgba[1] += int64(coeff) * int64(g) + rgba[2] += int64(coeff) * int64(b) + rgba[3] += int64(coeff) * int64(a) + sum += int64(coeff) + } + } + + offset := (y-newBounds.Min.Y)*out.Stride + (x-newBounds.Min.X)*8 + + value := clampUint16(rgba[0] / sum) + out.Pix[offset+0] = uint8(value >> 8) + out.Pix[offset+1] = uint8(value) + value = clampUint16(rgba[1] / sum) + out.Pix[offset+2] = uint8(value >> 8) + out.Pix[offset+3] = uint8(value) + value = clampUint16(rgba[2] / sum) + out.Pix[offset+4] = uint8(value >> 8) + out.Pix[offset+5] = uint8(value) + value = clampUint16(rgba[3] / sum) + out.Pix[offset+6] = uint8(value >> 8) + out.Pix[offset+7] = uint8(value) + } + } +} + +func resizeRGBA(in *image.RGBA, out *image.RGBA, scale float64, coeffs []int16, offset []int, filterLength int) { + newBounds := out.Bounds() + maxX := in.Bounds().Dx() - 1 + + for x := newBounds.Min.X; x < newBounds.Max.X; x++ { + row := in.Pix[x*in.Stride:] + for y := newBounds.Min.Y; y < newBounds.Max.Y; y++ { + var rgba [4]int32 + var sum int32 + start := offset[y] + ci := y * filterLength + for i := 0; i < filterLength; i++ { + coeff := coeffs[ci+i] + if coeff != 0 { + xi := start + i + switch { + case uint(xi) < uint(maxX): + xi *= 4 + case xi >= maxX: + xi = 4 * maxX + default: + xi = 0 + } + + rgba[0] += int32(coeff) * int32(row[xi+0]) + rgba[1] += int32(coeff) * int32(row[xi+1]) + rgba[2] += int32(coeff) * int32(row[xi+2]) + rgba[3] += int32(coeff) * int32(row[xi+3]) + sum += int32(coeff) + } + } + + xo := (y-newBounds.Min.Y)*out.Stride + (x-newBounds.Min.X)*4 + + out.Pix[xo+0] = clampUint8(rgba[0] / sum) + out.Pix[xo+1] = clampUint8(rgba[1] / sum) + out.Pix[xo+2] = clampUint8(rgba[2] / sum) + out.Pix[xo+3] = clampUint8(rgba[3] / sum) + } + } +} + +func resizeNRGBA(in *image.NRGBA, out *image.RGBA, scale float64, coeffs []int16, offset []int, filterLength int) { + newBounds := out.Bounds() + maxX := in.Bounds().Dx() - 1 + + for x := newBounds.Min.X; x < newBounds.Max.X; x++ { + row := in.Pix[x*in.Stride:] + for y := newBounds.Min.Y; y < newBounds.Max.Y; y++ { + var rgba [4]int32 + var sum int32 + start := offset[y] + ci := y * filterLength + for i := 0; i < filterLength; i++ { + coeff := coeffs[ci+i] + if coeff != 0 { + xi := start + i + switch { + case uint(xi) < uint(maxX): + xi *= 4 + case xi >= maxX: + xi = 4 * maxX + default: + xi = 0 + } + + // Forward alpha-premultiplication + a := int32(row[xi+3]) + r := int32(row[xi+0]) * a + r /= 0xff + g := int32(row[xi+1]) * a + g /= 0xff + b := int32(row[xi+2]) * a + b /= 0xff + + rgba[0] += int32(coeff) * r + rgba[1] += int32(coeff) * g + rgba[2] += int32(coeff) * b + rgba[3] += int32(coeff) * a + sum += int32(coeff) + } + } + + xo := (y-newBounds.Min.Y)*out.Stride + (x-newBounds.Min.X)*4 + + out.Pix[xo+0] = clampUint8(rgba[0] / sum) + out.Pix[xo+1] = clampUint8(rgba[1] / sum) + out.Pix[xo+2] = clampUint8(rgba[2] / sum) + out.Pix[xo+3] = clampUint8(rgba[3] / sum) + } + } +} + +func resizeRGBA64(in *image.RGBA64, out *image.RGBA64, scale float64, coeffs []int32, offset []int, filterLength int) { + newBounds := out.Bounds() + maxX := in.Bounds().Dx() - 1 + + for x := newBounds.Min.X; x < newBounds.Max.X; x++ { + row := in.Pix[x*in.Stride:] + for y := newBounds.Min.Y; y < newBounds.Max.Y; y++ { + var rgba [4]int64 + var sum int64 + start := offset[y] + ci := y * filterLength + for i := 0; i < filterLength; i++ { + coeff := coeffs[ci+i] + if coeff != 0 { + xi := start + i + switch { + case uint(xi) < uint(maxX): + xi *= 8 + case xi >= maxX: + xi = 8 * maxX + default: + xi = 0 + } + + rgba[0] += int64(coeff) * (int64(row[xi+0])<<8 | int64(row[xi+1])) + rgba[1] += int64(coeff) * (int64(row[xi+2])<<8 | int64(row[xi+3])) + rgba[2] += int64(coeff) * (int64(row[xi+4])<<8 | int64(row[xi+5])) + rgba[3] += int64(coeff) * (int64(row[xi+6])<<8 | int64(row[xi+7])) + sum += int64(coeff) + } + } + + xo := (y-newBounds.Min.Y)*out.Stride + (x-newBounds.Min.X)*8 + + value := clampUint16(rgba[0] / sum) + out.Pix[xo+0] = uint8(value >> 8) + out.Pix[xo+1] = uint8(value) + value = clampUint16(rgba[1] / sum) + out.Pix[xo+2] = uint8(value >> 8) + out.Pix[xo+3] = uint8(value) + value = clampUint16(rgba[2] / sum) + out.Pix[xo+4] = uint8(value >> 8) + out.Pix[xo+5] = uint8(value) + value = clampUint16(rgba[3] / sum) + out.Pix[xo+6] = uint8(value >> 8) + out.Pix[xo+7] = uint8(value) + } + } +} + +func resizeNRGBA64(in *image.NRGBA64, out *image.RGBA64, scale float64, coeffs []int32, offset []int, filterLength int) { + newBounds := out.Bounds() + maxX := in.Bounds().Dx() - 1 + + for x := newBounds.Min.X; x < newBounds.Max.X; x++ { + row := in.Pix[x*in.Stride:] + for y := newBounds.Min.Y; y < newBounds.Max.Y; y++ { + var rgba [4]int64 + var sum int64 + start := offset[y] + ci := y * filterLength + for i := 0; i < filterLength; i++ { + coeff := coeffs[ci+i] + if coeff != 0 { + xi := start + i + switch { + case uint(xi) < uint(maxX): + xi *= 8 + case xi >= maxX: + xi = 8 * maxX + default: + xi = 0 + } + + // Forward alpha-premultiplication + a := int64(uint16(row[xi+6])<<8 | uint16(row[xi+7])) + r := int64(uint16(row[xi+0])<<8|uint16(row[xi+1])) * a + r /= 0xffff + g := int64(uint16(row[xi+2])<<8|uint16(row[xi+3])) * a + g /= 0xffff + b := int64(uint16(row[xi+4])<<8|uint16(row[xi+5])) * a + b /= 0xffff + + rgba[0] += int64(coeff) * r + rgba[1] += int64(coeff) * g + rgba[2] += int64(coeff) * b + rgba[3] += int64(coeff) * a + sum += int64(coeff) + } + } + + xo := (y-newBounds.Min.Y)*out.Stride + (x-newBounds.Min.X)*8 + + value := clampUint16(rgba[0] / sum) + out.Pix[xo+0] = uint8(value >> 8) + out.Pix[xo+1] = uint8(value) + value = clampUint16(rgba[1] / sum) + out.Pix[xo+2] = uint8(value >> 8) + out.Pix[xo+3] = uint8(value) + value = clampUint16(rgba[2] / sum) + out.Pix[xo+4] = uint8(value >> 8) + out.Pix[xo+5] = uint8(value) + value = clampUint16(rgba[3] / sum) + out.Pix[xo+6] = uint8(value >> 8) + out.Pix[xo+7] = uint8(value) + } + } +} + +func resizeGray(in *image.Gray, out *image.Gray, scale float64, coeffs []int16, offset []int, filterLength int) { + newBounds := out.Bounds() + maxX := in.Bounds().Dx() - 1 + + for x := newBounds.Min.X; x < newBounds.Max.X; x++ { + row := in.Pix[(x-newBounds.Min.X)*in.Stride:] + for y := newBounds.Min.Y; y < newBounds.Max.Y; y++ { + var gray int32 + var sum int32 + start := offset[y] + ci := y * filterLength + for i := 0; i < filterLength; i++ { + coeff := coeffs[ci+i] + if coeff != 0 { + xi := start + i + switch { + case xi < 0: + xi = 0 + case xi >= maxX: + xi = maxX + } + gray += int32(coeff) * int32(row[xi]) + sum += int32(coeff) + } + } + + offset := (y-newBounds.Min.Y)*out.Stride + (x - newBounds.Min.X) + out.Pix[offset] = clampUint8(gray / sum) + } + } +} + +func resizeGray16(in *image.Gray16, out *image.Gray16, scale float64, coeffs []int32, offset []int, filterLength int) { + newBounds := out.Bounds() + maxX := in.Bounds().Dx() - 1 + + for x := newBounds.Min.X; x < newBounds.Max.X; x++ { + row := in.Pix[x*in.Stride:] + for y := newBounds.Min.Y; y < newBounds.Max.Y; y++ { + var gray int64 + var sum int64 + start := offset[y] + ci := y * filterLength + for i := 0; i < filterLength; i++ { + coeff := coeffs[ci+i] + if coeff != 0 { + xi := start + i + switch { + case uint(xi) < uint(maxX): + xi *= 2 + case xi >= maxX: + xi = 2 * maxX + default: + xi = 0 + } + gray += int64(coeff) * int64(uint16(row[xi+0])<<8|uint16(row[xi+1])) + sum += int64(coeff) + } + } + + offset := (y-newBounds.Min.Y)*out.Stride + (x-newBounds.Min.X)*2 + value := clampUint16(gray / sum) + out.Pix[offset+0] = uint8(value >> 8) + out.Pix[offset+1] = uint8(value) + } + } +} + +func resizeYCbCr(in *ycc, out *ycc, scale float64, coeffs []int16, offset []int, filterLength int) { + newBounds := out.Bounds() + maxX := in.Bounds().Dx() - 1 + + for x := newBounds.Min.X; x < newBounds.Max.X; x++ { + row := in.Pix[x*in.Stride:] + for y := newBounds.Min.Y; y < newBounds.Max.Y; y++ { + var p [3]int32 + var sum int32 + start := offset[y] + ci := y * filterLength + for i := 0; i < filterLength; i++ { + coeff := coeffs[ci+i] + if coeff != 0 { + xi := start + i + switch { + case uint(xi) < uint(maxX): + xi *= 3 + case xi >= maxX: + xi = 3 * maxX + default: + xi = 0 + } + p[0] += int32(coeff) * int32(row[xi+0]) + p[1] += int32(coeff) * int32(row[xi+1]) + p[2] += int32(coeff) * int32(row[xi+2]) + sum += int32(coeff) + } + } + + xo := (y-newBounds.Min.Y)*out.Stride + (x-newBounds.Min.X)*3 + out.Pix[xo+0] = clampUint8(p[0] / sum) + out.Pix[xo+1] = clampUint8(p[1] / sum) + out.Pix[xo+2] = clampUint8(p[2] / sum) + } + } +} + +func nearestYCbCr(in *ycc, out *ycc, scale float64, coeffs []bool, offset []int, filterLength int) { + newBounds := out.Bounds() + maxX := in.Bounds().Dx() - 1 + + for x := newBounds.Min.X; x < newBounds.Max.X; x++ { + row := in.Pix[x*in.Stride:] + for y := newBounds.Min.Y; y < newBounds.Max.Y; y++ { + var p [3]float32 + var sum float32 + start := offset[y] + ci := y * filterLength + for i := 0; i < filterLength; i++ { + if coeffs[ci+i] { + xi := start + i + switch { + case uint(xi) < uint(maxX): + xi *= 3 + case xi >= maxX: + xi = 3 * maxX + default: + xi = 0 + } + p[0] += float32(row[xi+0]) + p[1] += float32(row[xi+1]) + p[2] += float32(row[xi+2]) + sum++ + } + } + + xo := (y-newBounds.Min.Y)*out.Stride + (x-newBounds.Min.X)*3 + out.Pix[xo+0] = floatToUint8(p[0] / sum) + out.Pix[xo+1] = floatToUint8(p[1] / sum) + out.Pix[xo+2] = floatToUint8(p[2] / sum) + } + } +} diff --git a/vendor/github.com/nfnt/resize/filters.go b/vendor/github.com/nfnt/resize/filters.go new file mode 100644 index 0000000..4ce04e3 --- /dev/null +++ b/vendor/github.com/nfnt/resize/filters.go @@ -0,0 +1,143 @@ +/* +Copyright (c) 2012, Jan Schlicht + +Permission to use, copy, modify, and/or distribute this software for any purpose +with or without fee is hereby granted, provided that the above copyright notice +and this permission notice appear in all copies. + +THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH +REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND +FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, +INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS +OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER +TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF +THIS SOFTWARE. +*/ + +package resize + +import ( + "math" +) + +func nearest(in float64) float64 { + if in >= -0.5 && in < 0.5 { + return 1 + } + return 0 +} + +func linear(in float64) float64 { + in = math.Abs(in) + if in <= 1 { + return 1 - in + } + return 0 +} + +func cubic(in float64) float64 { + in = math.Abs(in) + if in <= 1 { + return in*in*(1.5*in-2.5) + 1.0 + } + if in <= 2 { + return in*(in*(2.5-0.5*in)-4.0) + 2.0 + } + return 0 +} + +func mitchellnetravali(in float64) float64 { + in = math.Abs(in) + if in <= 1 { + return (7.0*in*in*in - 12.0*in*in + 5.33333333333) * 0.16666666666 + } + if in <= 2 { + return (-2.33333333333*in*in*in + 12.0*in*in - 20.0*in + 10.6666666667) * 0.16666666666 + } + return 0 +} + +func sinc(x float64) float64 { + x = math.Abs(x) * math.Pi + if x >= 1.220703e-4 { + return math.Sin(x) / x + } + return 1 +} + +func lanczos2(in float64) float64 { + if in > -2 && in < 2 { + return sinc(in) * sinc(in*0.5) + } + return 0 +} + +func lanczos3(in float64) float64 { + if in > -3 && in < 3 { + return sinc(in) * sinc(in*0.3333333333333333) + } + return 0 +} + +// range [-256,256] +func createWeights8(dy, filterLength int, blur, scale float64, kernel func(float64) float64) ([]int16, []int, int) { + filterLength = filterLength * int(math.Max(math.Ceil(blur*scale), 1)) + filterFactor := math.Min(1./(blur*scale), 1) + + coeffs := make([]int16, dy*filterLength) + start := make([]int, dy) + for y := 0; y < dy; y++ { + interpX := scale*(float64(y)+0.5) - 0.5 + start[y] = int(interpX) - filterLength/2 + 1 + interpX -= float64(start[y]) + for i := 0; i < filterLength; i++ { + in := (interpX - float64(i)) * filterFactor + coeffs[y*filterLength+i] = int16(kernel(in) * 256) + } + } + + return coeffs, start, filterLength +} + +// range [-65536,65536] +func createWeights16(dy, filterLength int, blur, scale float64, kernel func(float64) float64) ([]int32, []int, int) { + filterLength = filterLength * int(math.Max(math.Ceil(blur*scale), 1)) + filterFactor := math.Min(1./(blur*scale), 1) + + coeffs := make([]int32, dy*filterLength) + start := make([]int, dy) + for y := 0; y < dy; y++ { + interpX := scale*(float64(y)+0.5) - 0.5 + start[y] = int(interpX) - filterLength/2 + 1 + interpX -= float64(start[y]) + for i := 0; i < filterLength; i++ { + in := (interpX - float64(i)) * filterFactor + coeffs[y*filterLength+i] = int32(kernel(in) * 65536) + } + } + + return coeffs, start, filterLength +} + +func createWeightsNearest(dy, filterLength int, blur, scale float64) ([]bool, []int, int) { + filterLength = filterLength * int(math.Max(math.Ceil(blur*scale), 1)) + filterFactor := math.Min(1./(blur*scale), 1) + + coeffs := make([]bool, dy*filterLength) + start := make([]int, dy) + for y := 0; y < dy; y++ { + interpX := scale*(float64(y)+0.5) - 0.5 + start[y] = int(interpX) - filterLength/2 + 1 + interpX -= float64(start[y]) + for i := 0; i < filterLength; i++ { + in := (interpX - float64(i)) * filterFactor + if in >= -0.5 && in < 0.5 { + coeffs[y*filterLength+i] = true + } else { + coeffs[y*filterLength+i] = false + } + } + } + + return coeffs, start, filterLength +} diff --git a/vendor/github.com/nfnt/resize/nearest.go b/vendor/github.com/nfnt/resize/nearest.go new file mode 100644 index 0000000..888039d --- /dev/null +++ b/vendor/github.com/nfnt/resize/nearest.go @@ -0,0 +1,318 @@ +/* +Copyright (c) 2014, Charlie Vieth + +Permission to use, copy, modify, and/or distribute this software for any purpose +with or without fee is hereby granted, provided that the above copyright notice +and this permission notice appear in all copies. + +THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH +REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND +FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, +INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS +OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER +TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF +THIS SOFTWARE. +*/ + +package resize + +import "image" + +func floatToUint8(x float32) uint8 { + // Nearest-neighbor values are always + // positive no need to check lower-bound. + if x > 0xfe { + return 0xff + } + return uint8(x) +} + +func floatToUint16(x float32) uint16 { + if x > 0xfffe { + return 0xffff + } + return uint16(x) +} + +func nearestGeneric(in image.Image, out *image.RGBA64, scale float64, coeffs []bool, offset []int, filterLength int) { + newBounds := out.Bounds() + maxX := in.Bounds().Dx() - 1 + + for x := newBounds.Min.X; x < newBounds.Max.X; x++ { + for y := newBounds.Min.Y; y < newBounds.Max.Y; y++ { + var rgba [4]float32 + var sum float32 + start := offset[y] + ci := y * filterLength + for i := 0; i < filterLength; i++ { + if coeffs[ci+i] { + xi := start + i + switch { + case xi < 0: + xi = 0 + case xi >= maxX: + xi = maxX + } + r, g, b, a := in.At(xi+in.Bounds().Min.X, x+in.Bounds().Min.Y).RGBA() + rgba[0] += float32(r) + rgba[1] += float32(g) + rgba[2] += float32(b) + rgba[3] += float32(a) + sum++ + } + } + + offset := (y-newBounds.Min.Y)*out.Stride + (x-newBounds.Min.X)*8 + value := floatToUint16(rgba[0] / sum) + out.Pix[offset+0] = uint8(value >> 8) + out.Pix[offset+1] = uint8(value) + value = floatToUint16(rgba[1] / sum) + out.Pix[offset+2] = uint8(value >> 8) + out.Pix[offset+3] = uint8(value) + value = floatToUint16(rgba[2] / sum) + out.Pix[offset+4] = uint8(value >> 8) + out.Pix[offset+5] = uint8(value) + value = floatToUint16(rgba[3] / sum) + out.Pix[offset+6] = uint8(value >> 8) + out.Pix[offset+7] = uint8(value) + } + } +} + +func nearestRGBA(in *image.RGBA, out *image.RGBA, scale float64, coeffs []bool, offset []int, filterLength int) { + newBounds := out.Bounds() + maxX := in.Bounds().Dx() - 1 + + for x := newBounds.Min.X; x < newBounds.Max.X; x++ { + row := in.Pix[x*in.Stride:] + for y := newBounds.Min.Y; y < newBounds.Max.Y; y++ { + var rgba [4]float32 + var sum float32 + start := offset[y] + ci := y * filterLength + for i := 0; i < filterLength; i++ { + if coeffs[ci+i] { + xi := start + i + switch { + case uint(xi) < uint(maxX): + xi *= 4 + case xi >= maxX: + xi = 4 * maxX + default: + xi = 0 + } + rgba[0] += float32(row[xi+0]) + rgba[1] += float32(row[xi+1]) + rgba[2] += float32(row[xi+2]) + rgba[3] += float32(row[xi+3]) + sum++ + } + } + + xo := (y-newBounds.Min.Y)*out.Stride + (x-newBounds.Min.X)*4 + out.Pix[xo+0] = floatToUint8(rgba[0] / sum) + out.Pix[xo+1] = floatToUint8(rgba[1] / sum) + out.Pix[xo+2] = floatToUint8(rgba[2] / sum) + out.Pix[xo+3] = floatToUint8(rgba[3] / sum) + } + } +} + +func nearestNRGBA(in *image.NRGBA, out *image.NRGBA, scale float64, coeffs []bool, offset []int, filterLength int) { + newBounds := out.Bounds() + maxX := in.Bounds().Dx() - 1 + + for x := newBounds.Min.X; x < newBounds.Max.X; x++ { + row := in.Pix[x*in.Stride:] + for y := newBounds.Min.Y; y < newBounds.Max.Y; y++ { + var rgba [4]float32 + var sum float32 + start := offset[y] + ci := y * filterLength + for i := 0; i < filterLength; i++ { + if coeffs[ci+i] { + xi := start + i + switch { + case uint(xi) < uint(maxX): + xi *= 4 + case xi >= maxX: + xi = 4 * maxX + default: + xi = 0 + } + rgba[0] += float32(row[xi+0]) + rgba[1] += float32(row[xi+1]) + rgba[2] += float32(row[xi+2]) + rgba[3] += float32(row[xi+3]) + sum++ + } + } + + xo := (y-newBounds.Min.Y)*out.Stride + (x-newBounds.Min.X)*4 + out.Pix[xo+0] = floatToUint8(rgba[0] / sum) + out.Pix[xo+1] = floatToUint8(rgba[1] / sum) + out.Pix[xo+2] = floatToUint8(rgba[2] / sum) + out.Pix[xo+3] = floatToUint8(rgba[3] / sum) + } + } +} + +func nearestRGBA64(in *image.RGBA64, out *image.RGBA64, scale float64, coeffs []bool, offset []int, filterLength int) { + newBounds := out.Bounds() + maxX := in.Bounds().Dx() - 1 + + for x := newBounds.Min.X; x < newBounds.Max.X; x++ { + row := in.Pix[x*in.Stride:] + for y := newBounds.Min.Y; y < newBounds.Max.Y; y++ { + var rgba [4]float32 + var sum float32 + start := offset[y] + ci := y * filterLength + for i := 0; i < filterLength; i++ { + if coeffs[ci+i] { + xi := start + i + switch { + case uint(xi) < uint(maxX): + xi *= 8 + case xi >= maxX: + xi = 8 * maxX + default: + xi = 0 + } + rgba[0] += float32(uint16(row[xi+0])<<8 | uint16(row[xi+1])) + rgba[1] += float32(uint16(row[xi+2])<<8 | uint16(row[xi+3])) + rgba[2] += float32(uint16(row[xi+4])<<8 | uint16(row[xi+5])) + rgba[3] += float32(uint16(row[xi+6])<<8 | uint16(row[xi+7])) + sum++ + } + } + + xo := (y-newBounds.Min.Y)*out.Stride + (x-newBounds.Min.X)*8 + value := floatToUint16(rgba[0] / sum) + out.Pix[xo+0] = uint8(value >> 8) + out.Pix[xo+1] = uint8(value) + value = floatToUint16(rgba[1] / sum) + out.Pix[xo+2] = uint8(value >> 8) + out.Pix[xo+3] = uint8(value) + value = floatToUint16(rgba[2] / sum) + out.Pix[xo+4] = uint8(value >> 8) + out.Pix[xo+5] = uint8(value) + value = floatToUint16(rgba[3] / sum) + out.Pix[xo+6] = uint8(value >> 8) + out.Pix[xo+7] = uint8(value) + } + } +} + +func nearestNRGBA64(in *image.NRGBA64, out *image.NRGBA64, scale float64, coeffs []bool, offset []int, filterLength int) { + newBounds := out.Bounds() + maxX := in.Bounds().Dx() - 1 + + for x := newBounds.Min.X; x < newBounds.Max.X; x++ { + row := in.Pix[x*in.Stride:] + for y := newBounds.Min.Y; y < newBounds.Max.Y; y++ { + var rgba [4]float32 + var sum float32 + start := offset[y] + ci := y * filterLength + for i := 0; i < filterLength; i++ { + if coeffs[ci+i] { + xi := start + i + switch { + case uint(xi) < uint(maxX): + xi *= 8 + case xi >= maxX: + xi = 8 * maxX + default: + xi = 0 + } + rgba[0] += float32(uint16(row[xi+0])<<8 | uint16(row[xi+1])) + rgba[1] += float32(uint16(row[xi+2])<<8 | uint16(row[xi+3])) + rgba[2] += float32(uint16(row[xi+4])<<8 | uint16(row[xi+5])) + rgba[3] += float32(uint16(row[xi+6])<<8 | uint16(row[xi+7])) + sum++ + } + } + + xo := (y-newBounds.Min.Y)*out.Stride + (x-newBounds.Min.X)*8 + value := floatToUint16(rgba[0] / sum) + out.Pix[xo+0] = uint8(value >> 8) + out.Pix[xo+1] = uint8(value) + value = floatToUint16(rgba[1] / sum) + out.Pix[xo+2] = uint8(value >> 8) + out.Pix[xo+3] = uint8(value) + value = floatToUint16(rgba[2] / sum) + out.Pix[xo+4] = uint8(value >> 8) + out.Pix[xo+5] = uint8(value) + value = floatToUint16(rgba[3] / sum) + out.Pix[xo+6] = uint8(value >> 8) + out.Pix[xo+7] = uint8(value) + } + } +} + +func nearestGray(in *image.Gray, out *image.Gray, scale float64, coeffs []bool, offset []int, filterLength int) { + newBounds := out.Bounds() + maxX := in.Bounds().Dx() - 1 + + for x := newBounds.Min.X; x < newBounds.Max.X; x++ { + row := in.Pix[x*in.Stride:] + for y := newBounds.Min.Y; y < newBounds.Max.Y; y++ { + var gray float32 + var sum float32 + start := offset[y] + ci := y * filterLength + for i := 0; i < filterLength; i++ { + if coeffs[ci+i] { + xi := start + i + switch { + case xi < 0: + xi = 0 + case xi >= maxX: + xi = maxX + } + gray += float32(row[xi]) + sum++ + } + } + + offset := (y-newBounds.Min.Y)*out.Stride + (x - newBounds.Min.X) + out.Pix[offset] = floatToUint8(gray / sum) + } + } +} + +func nearestGray16(in *image.Gray16, out *image.Gray16, scale float64, coeffs []bool, offset []int, filterLength int) { + newBounds := out.Bounds() + maxX := in.Bounds().Dx() - 1 + + for x := newBounds.Min.X; x < newBounds.Max.X; x++ { + row := in.Pix[x*in.Stride:] + for y := newBounds.Min.Y; y < newBounds.Max.Y; y++ { + var gray float32 + var sum float32 + start := offset[y] + ci := y * filterLength + for i := 0; i < filterLength; i++ { + if coeffs[ci+i] { + xi := start + i + switch { + case uint(xi) < uint(maxX): + xi *= 2 + case xi >= maxX: + xi = 2 * maxX + default: + xi = 0 + } + gray += float32(uint16(row[xi+0])<<8 | uint16(row[xi+1])) + sum++ + } + } + + offset := (y-newBounds.Min.Y)*out.Stride + (x-newBounds.Min.X)*2 + value := floatToUint16(gray / sum) + out.Pix[offset+0] = uint8(value >> 8) + out.Pix[offset+1] = uint8(value) + } + } +} diff --git a/vendor/github.com/nfnt/resize/resize.go b/vendor/github.com/nfnt/resize/resize.go new file mode 100644 index 0000000..57bd1fc --- /dev/null +++ b/vendor/github.com/nfnt/resize/resize.go @@ -0,0 +1,614 @@ +/* +Copyright (c) 2012, Jan Schlicht + +Permission to use, copy, modify, and/or distribute this software for any purpose +with or without fee is hereby granted, provided that the above copyright notice +and this permission notice appear in all copies. + +THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH +REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND +FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, +INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS +OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER +TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF +THIS SOFTWARE. +*/ + +// Package resize implements various image resizing methods. +// +// The package works with the Image interface described in the image package. +// Various interpolation methods are provided and multiple processors may be +// utilized in the computations. +// +// Example: +// imgResized := resize.Resize(1000, 0, imgOld, resize.MitchellNetravali) +package resize + +import ( + "image" + "runtime" + "sync" +) + +// An InterpolationFunction provides the parameters that describe an +// interpolation kernel. It returns the number of samples to take +// and the kernel function to use for sampling. +type InterpolationFunction int + +// InterpolationFunction constants +const ( + // Nearest-neighbor interpolation + NearestNeighbor InterpolationFunction = iota + // Bilinear interpolation + Bilinear + // Bicubic interpolation (with cubic hermite spline) + Bicubic + // Mitchell-Netravali interpolation + MitchellNetravali + // Lanczos interpolation (a=2) + Lanczos2 + // Lanczos interpolation (a=3) + Lanczos3 +) + +// kernal, returns an InterpolationFunctions taps and kernel. +func (i InterpolationFunction) kernel() (int, func(float64) float64) { + switch i { + case Bilinear: + return 2, linear + case Bicubic: + return 4, cubic + case MitchellNetravali: + return 4, mitchellnetravali + case Lanczos2: + return 4, lanczos2 + case Lanczos3: + return 6, lanczos3 + default: + // Default to NearestNeighbor. + return 2, nearest + } +} + +// values <1 will sharpen the image +var blur = 1.0 + +// Resize scales an image to new width and height using the interpolation function interp. +// A new image with the given dimensions will be returned. +// If one of the parameters width or height is set to 0, its size will be calculated so that +// the aspect ratio is that of the originating image. +// The resizing algorithm uses channels for parallel computation. +func Resize(width, height uint, img image.Image, interp InterpolationFunction) image.Image { + scaleX, scaleY := calcFactors(width, height, float64(img.Bounds().Dx()), float64(img.Bounds().Dy())) + if width == 0 { + width = uint(0.7 + float64(img.Bounds().Dx())/scaleX) + } + if height == 0 { + height = uint(0.7 + float64(img.Bounds().Dy())/scaleY) + } + + // Trivial case: return input image + if int(width) == img.Bounds().Dx() && int(height) == img.Bounds().Dy() { + return img + } + + if interp == NearestNeighbor { + return resizeNearest(width, height, scaleX, scaleY, img, interp) + } + + taps, kernel := interp.kernel() + cpus := runtime.GOMAXPROCS(0) + wg := sync.WaitGroup{} + + // Generic access to image.Image is slow in tight loops. + // The optimal access has to be determined from the concrete image type. + switch input := img.(type) { + case *image.RGBA: + // 8-bit precision + temp := image.NewRGBA(image.Rect(0, 0, input.Bounds().Dy(), int(width))) + result := image.NewRGBA(image.Rect(0, 0, int(width), int(height))) + + // horizontal filter, results in transposed temporary image + coeffs, offset, filterLength := createWeights8(temp.Bounds().Dy(), taps, blur, scaleX, kernel) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(temp, i, cpus).(*image.RGBA) + go func() { + defer wg.Done() + resizeRGBA(input, slice, scaleX, coeffs, offset, filterLength) + }() + } + wg.Wait() + + // horizontal filter on transposed image, result is not transposed + coeffs, offset, filterLength = createWeights8(result.Bounds().Dy(), taps, blur, scaleY, kernel) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(result, i, cpus).(*image.RGBA) + go func() { + defer wg.Done() + resizeRGBA(temp, slice, scaleY, coeffs, offset, filterLength) + }() + } + wg.Wait() + return result + case *image.NRGBA: + // 8-bit precision + temp := image.NewRGBA(image.Rect(0, 0, input.Bounds().Dy(), int(width))) + result := image.NewRGBA(image.Rect(0, 0, int(width), int(height))) + + // horizontal filter, results in transposed temporary image + coeffs, offset, filterLength := createWeights8(temp.Bounds().Dy(), taps, blur, scaleX, kernel) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(temp, i, cpus).(*image.RGBA) + go func() { + defer wg.Done() + resizeNRGBA(input, slice, scaleX, coeffs, offset, filterLength) + }() + } + wg.Wait() + + // horizontal filter on transposed image, result is not transposed + coeffs, offset, filterLength = createWeights8(result.Bounds().Dy(), taps, blur, scaleY, kernel) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(result, i, cpus).(*image.RGBA) + go func() { + defer wg.Done() + resizeRGBA(temp, slice, scaleY, coeffs, offset, filterLength) + }() + } + wg.Wait() + return result + + case *image.YCbCr: + // 8-bit precision + // accessing the YCbCr arrays in a tight loop is slow. + // converting the image to ycc increases performance by 2x. + temp := newYCC(image.Rect(0, 0, input.Bounds().Dy(), int(width)), input.SubsampleRatio) + result := newYCC(image.Rect(0, 0, int(width), int(height)), image.YCbCrSubsampleRatio444) + + coeffs, offset, filterLength := createWeights8(temp.Bounds().Dy(), taps, blur, scaleX, kernel) + in := imageYCbCrToYCC(input) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(temp, i, cpus).(*ycc) + go func() { + defer wg.Done() + resizeYCbCr(in, slice, scaleX, coeffs, offset, filterLength) + }() + } + wg.Wait() + + coeffs, offset, filterLength = createWeights8(result.Bounds().Dy(), taps, blur, scaleY, kernel) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(result, i, cpus).(*ycc) + go func() { + defer wg.Done() + resizeYCbCr(temp, slice, scaleY, coeffs, offset, filterLength) + }() + } + wg.Wait() + return result.YCbCr() + case *image.RGBA64: + // 16-bit precision + temp := image.NewRGBA64(image.Rect(0, 0, input.Bounds().Dy(), int(width))) + result := image.NewRGBA64(image.Rect(0, 0, int(width), int(height))) + + // horizontal filter, results in transposed temporary image + coeffs, offset, filterLength := createWeights16(temp.Bounds().Dy(), taps, blur, scaleX, kernel) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(temp, i, cpus).(*image.RGBA64) + go func() { + defer wg.Done() + resizeRGBA64(input, slice, scaleX, coeffs, offset, filterLength) + }() + } + wg.Wait() + + // horizontal filter on transposed image, result is not transposed + coeffs, offset, filterLength = createWeights16(result.Bounds().Dy(), taps, blur, scaleY, kernel) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(result, i, cpus).(*image.RGBA64) + go func() { + defer wg.Done() + resizeRGBA64(temp, slice, scaleY, coeffs, offset, filterLength) + }() + } + wg.Wait() + return result + case *image.NRGBA64: + // 16-bit precision + temp := image.NewRGBA64(image.Rect(0, 0, input.Bounds().Dy(), int(width))) + result := image.NewRGBA64(image.Rect(0, 0, int(width), int(height))) + + // horizontal filter, results in transposed temporary image + coeffs, offset, filterLength := createWeights16(temp.Bounds().Dy(), taps, blur, scaleX, kernel) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(temp, i, cpus).(*image.RGBA64) + go func() { + defer wg.Done() + resizeNRGBA64(input, slice, scaleX, coeffs, offset, filterLength) + }() + } + wg.Wait() + + // horizontal filter on transposed image, result is not transposed + coeffs, offset, filterLength = createWeights16(result.Bounds().Dy(), taps, blur, scaleY, kernel) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(result, i, cpus).(*image.RGBA64) + go func() { + defer wg.Done() + resizeRGBA64(temp, slice, scaleY, coeffs, offset, filterLength) + }() + } + wg.Wait() + return result + case *image.Gray: + // 8-bit precision + temp := image.NewGray(image.Rect(0, 0, input.Bounds().Dy(), int(width))) + result := image.NewGray(image.Rect(0, 0, int(width), int(height))) + + // horizontal filter, results in transposed temporary image + coeffs, offset, filterLength := createWeights8(temp.Bounds().Dy(), taps, blur, scaleX, kernel) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(temp, i, cpus).(*image.Gray) + go func() { + defer wg.Done() + resizeGray(input, slice, scaleX, coeffs, offset, filterLength) + }() + } + wg.Wait() + + // horizontal filter on transposed image, result is not transposed + coeffs, offset, filterLength = createWeights8(result.Bounds().Dy(), taps, blur, scaleY, kernel) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(result, i, cpus).(*image.Gray) + go func() { + defer wg.Done() + resizeGray(temp, slice, scaleY, coeffs, offset, filterLength) + }() + } + wg.Wait() + return result + case *image.Gray16: + // 16-bit precision + temp := image.NewGray16(image.Rect(0, 0, input.Bounds().Dy(), int(width))) + result := image.NewGray16(image.Rect(0, 0, int(width), int(height))) + + // horizontal filter, results in transposed temporary image + coeffs, offset, filterLength := createWeights16(temp.Bounds().Dy(), taps, blur, scaleX, kernel) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(temp, i, cpus).(*image.Gray16) + go func() { + defer wg.Done() + resizeGray16(input, slice, scaleX, coeffs, offset, filterLength) + }() + } + wg.Wait() + + // horizontal filter on transposed image, result is not transposed + coeffs, offset, filterLength = createWeights16(result.Bounds().Dy(), taps, blur, scaleY, kernel) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(result, i, cpus).(*image.Gray16) + go func() { + defer wg.Done() + resizeGray16(temp, slice, scaleY, coeffs, offset, filterLength) + }() + } + wg.Wait() + return result + default: + // 16-bit precision + temp := image.NewRGBA64(image.Rect(0, 0, img.Bounds().Dy(), int(width))) + result := image.NewRGBA64(image.Rect(0, 0, int(width), int(height))) + + // horizontal filter, results in transposed temporary image + coeffs, offset, filterLength := createWeights16(temp.Bounds().Dy(), taps, blur, scaleX, kernel) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(temp, i, cpus).(*image.RGBA64) + go func() { + defer wg.Done() + resizeGeneric(img, slice, scaleX, coeffs, offset, filterLength) + }() + } + wg.Wait() + + // horizontal filter on transposed image, result is not transposed + coeffs, offset, filterLength = createWeights16(result.Bounds().Dy(), taps, blur, scaleY, kernel) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(result, i, cpus).(*image.RGBA64) + go func() { + defer wg.Done() + resizeRGBA64(temp, slice, scaleY, coeffs, offset, filterLength) + }() + } + wg.Wait() + return result + } +} + +func resizeNearest(width, height uint, scaleX, scaleY float64, img image.Image, interp InterpolationFunction) image.Image { + taps, _ := interp.kernel() + cpus := runtime.GOMAXPROCS(0) + wg := sync.WaitGroup{} + + switch input := img.(type) { + case *image.RGBA: + // 8-bit precision + temp := image.NewRGBA(image.Rect(0, 0, input.Bounds().Dy(), int(width))) + result := image.NewRGBA(image.Rect(0, 0, int(width), int(height))) + + // horizontal filter, results in transposed temporary image + coeffs, offset, filterLength := createWeightsNearest(temp.Bounds().Dy(), taps, blur, scaleX) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(temp, i, cpus).(*image.RGBA) + go func() { + defer wg.Done() + nearestRGBA(input, slice, scaleX, coeffs, offset, filterLength) + }() + } + wg.Wait() + + // horizontal filter on transposed image, result is not transposed + coeffs, offset, filterLength = createWeightsNearest(result.Bounds().Dy(), taps, blur, scaleY) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(result, i, cpus).(*image.RGBA) + go func() { + defer wg.Done() + nearestRGBA(temp, slice, scaleY, coeffs, offset, filterLength) + }() + } + wg.Wait() + return result + case *image.NRGBA: + // 8-bit precision + temp := image.NewNRGBA(image.Rect(0, 0, input.Bounds().Dy(), int(width))) + result := image.NewNRGBA(image.Rect(0, 0, int(width), int(height))) + + // horizontal filter, results in transposed temporary image + coeffs, offset, filterLength := createWeightsNearest(temp.Bounds().Dy(), taps, blur, scaleX) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(temp, i, cpus).(*image.NRGBA) + go func() { + defer wg.Done() + nearestNRGBA(input, slice, scaleX, coeffs, offset, filterLength) + }() + } + wg.Wait() + + // horizontal filter on transposed image, result is not transposed + coeffs, offset, filterLength = createWeightsNearest(result.Bounds().Dy(), taps, blur, scaleY) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(result, i, cpus).(*image.NRGBA) + go func() { + defer wg.Done() + nearestNRGBA(temp, slice, scaleY, coeffs, offset, filterLength) + }() + } + wg.Wait() + return result + case *image.YCbCr: + // 8-bit precision + // accessing the YCbCr arrays in a tight loop is slow. + // converting the image to ycc increases performance by 2x. + temp := newYCC(image.Rect(0, 0, input.Bounds().Dy(), int(width)), input.SubsampleRatio) + result := newYCC(image.Rect(0, 0, int(width), int(height)), image.YCbCrSubsampleRatio444) + + coeffs, offset, filterLength := createWeightsNearest(temp.Bounds().Dy(), taps, blur, scaleX) + in := imageYCbCrToYCC(input) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(temp, i, cpus).(*ycc) + go func() { + defer wg.Done() + nearestYCbCr(in, slice, scaleX, coeffs, offset, filterLength) + }() + } + wg.Wait() + + coeffs, offset, filterLength = createWeightsNearest(result.Bounds().Dy(), taps, blur, scaleY) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(result, i, cpus).(*ycc) + go func() { + defer wg.Done() + nearestYCbCr(temp, slice, scaleY, coeffs, offset, filterLength) + }() + } + wg.Wait() + return result.YCbCr() + case *image.RGBA64: + // 16-bit precision + temp := image.NewRGBA64(image.Rect(0, 0, input.Bounds().Dy(), int(width))) + result := image.NewRGBA64(image.Rect(0, 0, int(width), int(height))) + + // horizontal filter, results in transposed temporary image + coeffs, offset, filterLength := createWeightsNearest(temp.Bounds().Dy(), taps, blur, scaleX) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(temp, i, cpus).(*image.RGBA64) + go func() { + defer wg.Done() + nearestRGBA64(input, slice, scaleX, coeffs, offset, filterLength) + }() + } + wg.Wait() + + // horizontal filter on transposed image, result is not transposed + coeffs, offset, filterLength = createWeightsNearest(result.Bounds().Dy(), taps, blur, scaleY) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(result, i, cpus).(*image.RGBA64) + go func() { + defer wg.Done() + nearestRGBA64(temp, slice, scaleY, coeffs, offset, filterLength) + }() + } + wg.Wait() + return result + case *image.NRGBA64: + // 16-bit precision + temp := image.NewNRGBA64(image.Rect(0, 0, input.Bounds().Dy(), int(width))) + result := image.NewNRGBA64(image.Rect(0, 0, int(width), int(height))) + + // horizontal filter, results in transposed temporary image + coeffs, offset, filterLength := createWeightsNearest(temp.Bounds().Dy(), taps, blur, scaleX) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(temp, i, cpus).(*image.NRGBA64) + go func() { + defer wg.Done() + nearestNRGBA64(input, slice, scaleX, coeffs, offset, filterLength) + }() + } + wg.Wait() + + // horizontal filter on transposed image, result is not transposed + coeffs, offset, filterLength = createWeightsNearest(result.Bounds().Dy(), taps, blur, scaleY) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(result, i, cpus).(*image.NRGBA64) + go func() { + defer wg.Done() + nearestNRGBA64(temp, slice, scaleY, coeffs, offset, filterLength) + }() + } + wg.Wait() + return result + case *image.Gray: + // 8-bit precision + temp := image.NewGray(image.Rect(0, 0, input.Bounds().Dy(), int(width))) + result := image.NewGray(image.Rect(0, 0, int(width), int(height))) + + // horizontal filter, results in transposed temporary image + coeffs, offset, filterLength := createWeightsNearest(temp.Bounds().Dy(), taps, blur, scaleX) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(temp, i, cpus).(*image.Gray) + go func() { + defer wg.Done() + nearestGray(input, slice, scaleX, coeffs, offset, filterLength) + }() + } + wg.Wait() + + // horizontal filter on transposed image, result is not transposed + coeffs, offset, filterLength = createWeightsNearest(result.Bounds().Dy(), taps, blur, scaleY) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(result, i, cpus).(*image.Gray) + go func() { + defer wg.Done() + nearestGray(temp, slice, scaleY, coeffs, offset, filterLength) + }() + } + wg.Wait() + return result + case *image.Gray16: + // 16-bit precision + temp := image.NewGray16(image.Rect(0, 0, input.Bounds().Dy(), int(width))) + result := image.NewGray16(image.Rect(0, 0, int(width), int(height))) + + // horizontal filter, results in transposed temporary image + coeffs, offset, filterLength := createWeightsNearest(temp.Bounds().Dy(), taps, blur, scaleX) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(temp, i, cpus).(*image.Gray16) + go func() { + defer wg.Done() + nearestGray16(input, slice, scaleX, coeffs, offset, filterLength) + }() + } + wg.Wait() + + // horizontal filter on transposed image, result is not transposed + coeffs, offset, filterLength = createWeightsNearest(result.Bounds().Dy(), taps, blur, scaleY) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(result, i, cpus).(*image.Gray16) + go func() { + defer wg.Done() + nearestGray16(temp, slice, scaleY, coeffs, offset, filterLength) + }() + } + wg.Wait() + return result + default: + // 16-bit precision + temp := image.NewRGBA64(image.Rect(0, 0, img.Bounds().Dy(), int(width))) + result := image.NewRGBA64(image.Rect(0, 0, int(width), int(height))) + + // horizontal filter, results in transposed temporary image + coeffs, offset, filterLength := createWeightsNearest(temp.Bounds().Dy(), taps, blur, scaleX) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(temp, i, cpus).(*image.RGBA64) + go func() { + defer wg.Done() + nearestGeneric(img, slice, scaleX, coeffs, offset, filterLength) + }() + } + wg.Wait() + + // horizontal filter on transposed image, result is not transposed + coeffs, offset, filterLength = createWeightsNearest(result.Bounds().Dy(), taps, blur, scaleY) + wg.Add(cpus) + for i := 0; i < cpus; i++ { + slice := makeSlice(result, i, cpus).(*image.RGBA64) + go func() { + defer wg.Done() + nearestRGBA64(temp, slice, scaleY, coeffs, offset, filterLength) + }() + } + wg.Wait() + return result + } + +} + +// Calculates scaling factors using old and new image dimensions. +func calcFactors(width, height uint, oldWidth, oldHeight float64) (scaleX, scaleY float64) { + if width == 0 { + if height == 0 { + scaleX = 1.0 + scaleY = 1.0 + } else { + scaleY = oldHeight / float64(height) + scaleX = scaleY + } + } else { + scaleX = oldWidth / float64(width) + if height == 0 { + scaleY = scaleX + } else { + scaleY = oldHeight / float64(height) + } + } + return +} + +type imageWithSubImage interface { + image.Image + SubImage(image.Rectangle) image.Image +} + +func makeSlice(img imageWithSubImage, i, n int) image.Image { + return img.SubImage(image.Rect(img.Bounds().Min.X, img.Bounds().Min.Y+i*img.Bounds().Dy()/n, img.Bounds().Max.X, img.Bounds().Min.Y+(i+1)*img.Bounds().Dy()/n)) +} diff --git a/vendor/github.com/nfnt/resize/thumbnail.go b/vendor/github.com/nfnt/resize/thumbnail.go new file mode 100644 index 0000000..9efc246 --- /dev/null +++ b/vendor/github.com/nfnt/resize/thumbnail.go @@ -0,0 +1,55 @@ +/* +Copyright (c) 2012, Jan Schlicht + +Permission to use, copy, modify, and/or distribute this software for any purpose +with or without fee is hereby granted, provided that the above copyright notice +and this permission notice appear in all copies. + +THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH +REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND +FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, +INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS +OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER +TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF +THIS SOFTWARE. +*/ + +package resize + +import ( + "image" +) + +// Thumbnail will downscale provided image to max width and height preserving +// original aspect ratio and using the interpolation function interp. +// It will return original image, without processing it, if original sizes +// are already smaller than provided constraints. +func Thumbnail(maxWidth, maxHeight uint, img image.Image, interp InterpolationFunction) image.Image { + origBounds := img.Bounds() + origWidth := uint(origBounds.Dx()) + origHeight := uint(origBounds.Dy()) + newWidth, newHeight := origWidth, origHeight + + // Return original image if it have same or smaller size as constraints + if maxWidth >= origWidth && maxHeight >= origHeight { + return img + } + + // Preserve aspect ratio + if origWidth > maxWidth { + newHeight = uint(origHeight * maxWidth / origWidth) + if newHeight < 1 { + newHeight = 1 + } + newWidth = maxWidth + } + + if newHeight > maxHeight { + newWidth = uint(newWidth * maxHeight / newHeight) + if newWidth < 1 { + newWidth = 1 + } + newHeight = maxHeight + } + return Resize(newWidth, newHeight, img, interp) +} diff --git a/vendor/github.com/nfnt/resize/ycc.go b/vendor/github.com/nfnt/resize/ycc.go new file mode 100644 index 0000000..1041599 --- /dev/null +++ b/vendor/github.com/nfnt/resize/ycc.go @@ -0,0 +1,227 @@ +/* +Copyright (c) 2014, Charlie Vieth + +Permission to use, copy, modify, and/or distribute this software for any purpose +with or without fee is hereby granted, provided that the above copyright notice +and this permission notice appear in all copies. + +THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH +REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND +FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, +INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS +OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER +TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF +THIS SOFTWARE. +*/ + +package resize + +import ( + "image" + "image/color" +) + +// ycc is an in memory YCbCr image. The Y, Cb and Cr samples are held in a +// single slice to increase resizing performance. +type ycc struct { + // Pix holds the image's pixels, in Y, Cb, Cr order. The pixel at + // (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*3]. + Pix []uint8 + // Stride is the Pix stride (in bytes) between vertically adjacent pixels. + Stride int + // Rect is the image's bounds. + Rect image.Rectangle + // SubsampleRatio is the subsample ratio of the original YCbCr image. + SubsampleRatio image.YCbCrSubsampleRatio +} + +// PixOffset returns the index of the first element of Pix that corresponds to +// the pixel at (x, y). +func (p *ycc) PixOffset(x, y int) int { + return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*3 +} + +func (p *ycc) Bounds() image.Rectangle { + return p.Rect +} + +func (p *ycc) ColorModel() color.Model { + return color.YCbCrModel +} + +func (p *ycc) At(x, y int) color.Color { + if !(image.Point{x, y}.In(p.Rect)) { + return color.YCbCr{} + } + i := p.PixOffset(x, y) + return color.YCbCr{ + p.Pix[i+0], + p.Pix[i+1], + p.Pix[i+2], + } +} + +func (p *ycc) Opaque() bool { + return true +} + +// SubImage returns an image representing the portion of the image p visible +// through r. The returned value shares pixels with the original image. +func (p *ycc) SubImage(r image.Rectangle) image.Image { + r = r.Intersect(p.Rect) + if r.Empty() { + return &ycc{SubsampleRatio: p.SubsampleRatio} + } + i := p.PixOffset(r.Min.X, r.Min.Y) + return &ycc{ + Pix: p.Pix[i:], + Stride: p.Stride, + Rect: r, + SubsampleRatio: p.SubsampleRatio, + } +} + +// newYCC returns a new ycc with the given bounds and subsample ratio. +func newYCC(r image.Rectangle, s image.YCbCrSubsampleRatio) *ycc { + w, h := r.Dx(), r.Dy() + buf := make([]uint8, 3*w*h) + return &ycc{Pix: buf, Stride: 3 * w, Rect: r, SubsampleRatio: s} +} + +// YCbCr converts ycc to a YCbCr image with the same subsample ratio +// as the YCbCr image that ycc was generated from. +func (p *ycc) YCbCr() *image.YCbCr { + ycbcr := image.NewYCbCr(p.Rect, p.SubsampleRatio) + var off int + + switch ycbcr.SubsampleRatio { + case image.YCbCrSubsampleRatio422: + for y := ycbcr.Rect.Min.Y; y < ycbcr.Rect.Max.Y; y++ { + yy := (y - ycbcr.Rect.Min.Y) * ycbcr.YStride + cy := (y - ycbcr.Rect.Min.Y) * ycbcr.CStride + for x := ycbcr.Rect.Min.X; x < ycbcr.Rect.Max.X; x++ { + xx := (x - ycbcr.Rect.Min.X) + yi := yy + xx + ci := cy + xx/2 + ycbcr.Y[yi] = p.Pix[off+0] + ycbcr.Cb[ci] = p.Pix[off+1] + ycbcr.Cr[ci] = p.Pix[off+2] + off += 3 + } + } + case image.YCbCrSubsampleRatio420: + for y := ycbcr.Rect.Min.Y; y < ycbcr.Rect.Max.Y; y++ { + yy := (y - ycbcr.Rect.Min.Y) * ycbcr.YStride + cy := (y/2 - ycbcr.Rect.Min.Y/2) * ycbcr.CStride + for x := ycbcr.Rect.Min.X; x < ycbcr.Rect.Max.X; x++ { + xx := (x - ycbcr.Rect.Min.X) + yi := yy + xx + ci := cy + xx/2 + ycbcr.Y[yi] = p.Pix[off+0] + ycbcr.Cb[ci] = p.Pix[off+1] + ycbcr.Cr[ci] = p.Pix[off+2] + off += 3 + } + } + case image.YCbCrSubsampleRatio440: + for y := ycbcr.Rect.Min.Y; y < ycbcr.Rect.Max.Y; y++ { + yy := (y - ycbcr.Rect.Min.Y) * ycbcr.YStride + cy := (y/2 - ycbcr.Rect.Min.Y/2) * ycbcr.CStride + for x := ycbcr.Rect.Min.X; x < ycbcr.Rect.Max.X; x++ { + xx := (x - ycbcr.Rect.Min.X) + yi := yy + xx + ci := cy + xx + ycbcr.Y[yi] = p.Pix[off+0] + ycbcr.Cb[ci] = p.Pix[off+1] + ycbcr.Cr[ci] = p.Pix[off+2] + off += 3 + } + } + default: + // Default to 4:4:4 subsampling. + for y := ycbcr.Rect.Min.Y; y < ycbcr.Rect.Max.Y; y++ { + yy := (y - ycbcr.Rect.Min.Y) * ycbcr.YStride + cy := (y - ycbcr.Rect.Min.Y) * ycbcr.CStride + for x := ycbcr.Rect.Min.X; x < ycbcr.Rect.Max.X; x++ { + xx := (x - ycbcr.Rect.Min.X) + yi := yy + xx + ci := cy + xx + ycbcr.Y[yi] = p.Pix[off+0] + ycbcr.Cb[ci] = p.Pix[off+1] + ycbcr.Cr[ci] = p.Pix[off+2] + off += 3 + } + } + } + return ycbcr +} + +// imageYCbCrToYCC converts a YCbCr image to a ycc image for resizing. +func imageYCbCrToYCC(in *image.YCbCr) *ycc { + w, h := in.Rect.Dx(), in.Rect.Dy() + r := image.Rect(0, 0, w, h) + buf := make([]uint8, 3*w*h) + p := ycc{Pix: buf, Stride: 3 * w, Rect: r, SubsampleRatio: in.SubsampleRatio} + var off int + + switch in.SubsampleRatio { + case image.YCbCrSubsampleRatio422: + for y := in.Rect.Min.Y; y < in.Rect.Max.Y; y++ { + yy := (y - in.Rect.Min.Y) * in.YStride + cy := (y - in.Rect.Min.Y) * in.CStride + for x := in.Rect.Min.X; x < in.Rect.Max.X; x++ { + xx := (x - in.Rect.Min.X) + yi := yy + xx + ci := cy + xx/2 + p.Pix[off+0] = in.Y[yi] + p.Pix[off+1] = in.Cb[ci] + p.Pix[off+2] = in.Cr[ci] + off += 3 + } + } + case image.YCbCrSubsampleRatio420: + for y := in.Rect.Min.Y; y < in.Rect.Max.Y; y++ { + yy := (y - in.Rect.Min.Y) * in.YStride + cy := (y/2 - in.Rect.Min.Y/2) * in.CStride + for x := in.Rect.Min.X; x < in.Rect.Max.X; x++ { + xx := (x - in.Rect.Min.X) + yi := yy + xx + ci := cy + xx/2 + p.Pix[off+0] = in.Y[yi] + p.Pix[off+1] = in.Cb[ci] + p.Pix[off+2] = in.Cr[ci] + off += 3 + } + } + case image.YCbCrSubsampleRatio440: + for y := in.Rect.Min.Y; y < in.Rect.Max.Y; y++ { + yy := (y - in.Rect.Min.Y) * in.YStride + cy := (y/2 - in.Rect.Min.Y/2) * in.CStride + for x := in.Rect.Min.X; x < in.Rect.Max.X; x++ { + xx := (x - in.Rect.Min.X) + yi := yy + xx + ci := cy + xx + p.Pix[off+0] = in.Y[yi] + p.Pix[off+1] = in.Cb[ci] + p.Pix[off+2] = in.Cr[ci] + off += 3 + } + } + default: + // Default to 4:4:4 subsampling. + for y := in.Rect.Min.Y; y < in.Rect.Max.Y; y++ { + yy := (y - in.Rect.Min.Y) * in.YStride + cy := (y - in.Rect.Min.Y) * in.CStride + for x := in.Rect.Min.X; x < in.Rect.Max.X; x++ { + xx := (x - in.Rect.Min.X) + yi := yy + xx + ci := cy + xx + p.Pix[off+0] = in.Y[yi] + p.Pix[off+1] = in.Cb[ci] + p.Pix[off+2] = in.Cr[ci] + off += 3 + } + } + } + return &p +} diff --git a/vendor/golang.org/x/image/draw/draw.go b/vendor/golang.org/x/image/draw/draw.go new file mode 100644 index 0000000..dfaa7fc --- /dev/null +++ b/vendor/golang.org/x/image/draw/draw.go @@ -0,0 +1,43 @@ +// Copyright 2015 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package draw provides image composition functions. +// +// See "The Go image/draw package" for an introduction to this package: +// http://golang.org/doc/articles/image_draw.html +// +// This package is a superset of and a drop-in replacement for the image/draw +// package in the standard library. +package draw + +// This file, and the go1_*.go files, just contains the API exported by the +// image/draw package in the standard library. Other files in this package +// provide additional features. + +import ( + "image" + "image/draw" +) + +// Draw calls DrawMask with a nil mask. +func Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point, op Op) { + draw.Draw(dst, r, src, sp, draw.Op(op)) +} + +// DrawMask aligns r.Min in dst with sp in src and mp in mask and then +// replaces the rectangle r in dst with the result of a Porter-Duff +// composition. A nil mask is treated as opaque. +func DrawMask(dst Image, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) { + draw.DrawMask(dst, r, src, sp, mask, mp, draw.Op(op)) +} + +// FloydSteinberg is a Drawer that is the Src Op with Floyd-Steinberg error +// diffusion. +var FloydSteinberg Drawer = floydSteinberg{} + +type floydSteinberg struct{} + +func (floydSteinberg) Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) { + draw.FloydSteinberg.Draw(dst, r, src, sp) +} diff --git a/vendor/golang.org/x/image/draw/gen.go b/vendor/golang.org/x/image/draw/gen.go new file mode 100644 index 0000000..65a7123 --- /dev/null +++ b/vendor/golang.org/x/image/draw/gen.go @@ -0,0 +1,1403 @@ +// Copyright 2015 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// +build ignore + +package main + +import ( + "bytes" + "flag" + "fmt" + "go/format" + "io/ioutil" + "log" + "os" + "strings" +) + +var debug = flag.Bool("debug", false, "") + +func main() { + flag.Parse() + + w := new(bytes.Buffer) + w.WriteString("// generated by \"go run gen.go\". DO NOT EDIT.\n\n" + + "package draw\n\nimport (\n" + + "\"image\"\n" + + "\"image/color\"\n" + + "\"math\"\n" + + "\n" + + "\"golang.org/x/image/math/f64\"\n" + + ")\n") + + gen(w, "nnInterpolator", codeNNScaleLeaf, codeNNTransformLeaf) + gen(w, "ablInterpolator", codeABLScaleLeaf, codeABLTransformLeaf) + genKernel(w) + + if *debug { + os.Stdout.Write(w.Bytes()) + return + } + out, err := format.Source(w.Bytes()) + if err != nil { + log.Fatal(err) + } + if err := ioutil.WriteFile("impl.go", out, 0660); err != nil { + log.Fatal(err) + } +} + +var ( + // dsTypes are the (dst image type, src image type) pairs to generate + // scale_DType_SType implementations for. The last element in the slice + // should be the fallback pair ("Image", "image.Image"). + // + // TODO: add *image.CMYK src type after Go 1.5 is released. + // An *image.CMYK is also alwaysOpaque. + dsTypes = []struct{ dType, sType string }{ + {"*image.RGBA", "*image.Gray"}, + {"*image.RGBA", "*image.NRGBA"}, + {"*image.RGBA", "*image.RGBA"}, + {"*image.RGBA", "*image.YCbCr"}, + {"*image.RGBA", "image.Image"}, + {"Image", "image.Image"}, + } + dTypes, sTypes []string + sTypesForDType = map[string][]string{} + subsampleRatios = []string{ + "444", + "422", + "420", + "440", + } + ops = []string{"Over", "Src"} + // alwaysOpaque are those image.Image implementations that are always + // opaque. For these types, Over is equivalent to the faster Src, in the + // absence of a source mask. + alwaysOpaque = map[string]bool{ + "*image.Gray": true, + "*image.YCbCr": true, + } +) + +func init() { + dTypesSeen := map[string]bool{} + sTypesSeen := map[string]bool{} + for _, t := range dsTypes { + if !sTypesSeen[t.sType] { + sTypesSeen[t.sType] = true + sTypes = append(sTypes, t.sType) + } + if !dTypesSeen[t.dType] { + dTypesSeen[t.dType] = true + dTypes = append(dTypes, t.dType) + } + sTypesForDType[t.dType] = append(sTypesForDType[t.dType], t.sType) + } + sTypesForDType["anyDType"] = sTypes +} + +type data struct { + dType string + sType string + sratio string + receiver string + op string +} + +func gen(w *bytes.Buffer, receiver string, codes ...string) { + expn(w, codeRoot, &data{receiver: receiver}) + for _, code := range codes { + for _, t := range dsTypes { + for _, op := range ops { + if op == "Over" && alwaysOpaque[t.sType] { + continue + } + expn(w, code, &data{ + dType: t.dType, + sType: t.sType, + receiver: receiver, + op: op, + }) + } + } + } +} + +func genKernel(w *bytes.Buffer) { + expn(w, codeKernelRoot, &data{}) + for _, sType := range sTypes { + expn(w, codeKernelScaleLeafX, &data{ + sType: sType, + }) + } + for _, dType := range dTypes { + for _, op := range ops { + expn(w, codeKernelScaleLeafY, &data{ + dType: dType, + op: op, + }) + } + } + for _, t := range dsTypes { + for _, op := range ops { + if op == "Over" && alwaysOpaque[t.sType] { + continue + } + expn(w, codeKernelTransformLeaf, &data{ + dType: t.dType, + sType: t.sType, + op: op, + }) + } + } +} + +func expn(w *bytes.Buffer, code string, d *data) { + if d.sType == "*image.YCbCr" && d.sratio == "" { + for _, sratio := range subsampleRatios { + e := *d + e.sratio = sratio + expn(w, code, &e) + } + return + } + + for _, line := range strings.Split(code, "\n") { + line = expnLine(line, d) + if line == ";" { + continue + } + fmt.Fprintln(w, line) + } +} + +func expnLine(line string, d *data) string { + for { + i := strings.IndexByte(line, '$') + if i < 0 { + break + } + prefix, s := line[:i], line[i+1:] + + i = len(s) + for j, c := range s { + if !('A' <= c && c <= 'Z' || 'a' <= c && c <= 'z') { + i = j + break + } + } + dollar, suffix := s[:i], s[i:] + + e := expnDollar(prefix, dollar, suffix, d) + if e == "" { + log.Fatalf("couldn't expand %q", line) + } + line = e + } + return line +} + +// expnDollar expands a "$foo" fragment in a line of generated code. It returns +// the empty string if there was a problem. It returns ";" if the generated +// code is a no-op. +func expnDollar(prefix, dollar, suffix string, d *data) string { + switch dollar { + case "dType": + return prefix + d.dType + suffix + case "dTypeRN": + return prefix + relName(d.dType) + suffix + case "sratio": + return prefix + d.sratio + suffix + case "sType": + return prefix + d.sType + suffix + case "sTypeRN": + return prefix + relName(d.sType) + suffix + case "receiver": + return prefix + d.receiver + suffix + case "op": + return prefix + d.op + suffix + + case "switch": + return expnSwitch("", "", true, suffix) + case "switchD": + return expnSwitch("", "", false, suffix) + case "switchS": + return expnSwitch("", "anyDType", false, suffix) + + case "preOuter": + switch d.dType { + default: + return ";" + case "Image": + s := "" + if d.sType == "image.Image" { + s = "srcMask, smp := opts.SrcMask, opts.SrcMaskP\n" + } + return s + + "dstMask, dmp := opts.DstMask, opts.DstMaskP\n" + + "dstColorRGBA64 := &color.RGBA64{}\n" + + "dstColor := color.Color(dstColorRGBA64)" + } + + case "preInner": + switch d.dType { + default: + return ";" + case "*image.RGBA": + return "d := " + pixOffset("dst", "dr.Min.X+adr.Min.X", "dr.Min.Y+int(dy)", "*4", "*dst.Stride") + } + + case "preKernelOuter": + switch d.sType { + default: + return ";" + case "image.Image": + return "srcMask, smp := opts.SrcMask, opts.SrcMaskP" + } + + case "preKernelInner": + switch d.dType { + default: + return ";" + case "*image.RGBA": + return "d := " + pixOffset("dst", "dr.Min.X+int(dx)", "dr.Min.Y+adr.Min.Y", "*4", "*dst.Stride") + } + + case "blend": + args, _ := splitArgs(suffix) + if len(args) != 4 { + return "" + } + switch d.sType { + default: + return argf(args, ""+ + "$3r = $0*$1r + $2*$3r\n"+ + "$3g = $0*$1g + $2*$3g\n"+ + "$3b = $0*$1b + $2*$3b\n"+ + "$3a = $0*$1a + $2*$3a", + ) + case "*image.Gray": + return argf(args, ""+ + "$3r = $0*$1r + $2*$3r", + ) + case "*image.YCbCr": + return argf(args, ""+ + "$3r = $0*$1r + $2*$3r\n"+ + "$3g = $0*$1g + $2*$3g\n"+ + "$3b = $0*$1b + $2*$3b", + ) + } + + case "clampToAlpha": + if alwaysOpaque[d.sType] { + return ";" + } + // Go uses alpha-premultiplied color. The naive computation can lead to + // invalid colors, e.g. red > alpha, when some weights are negative. + return ` + if pr > pa { + pr = pa + } + if pg > pa { + pg = pa + } + if pb > pa { + pb = pa + } + ` + + case "convFtou": + args, _ := splitArgs(suffix) + if len(args) != 2 { + return "" + } + + switch d.sType { + default: + return argf(args, ""+ + "$0r := uint32($1r)\n"+ + "$0g := uint32($1g)\n"+ + "$0b := uint32($1b)\n"+ + "$0a := uint32($1a)", + ) + case "*image.Gray": + return argf(args, ""+ + "$0r := uint32($1r)", + ) + case "*image.YCbCr": + return argf(args, ""+ + "$0r := uint32($1r)\n"+ + "$0g := uint32($1g)\n"+ + "$0b := uint32($1b)", + ) + } + + case "outputu": + args, _ := splitArgs(suffix) + if len(args) != 3 { + return "" + } + + switch d.op { + case "Over": + switch d.dType { + default: + log.Fatalf("bad dType %q", d.dType) + case "Image": + return argf(args, ""+ + "qr, qg, qb, qa := dst.At($0, $1).RGBA()\n"+ + "if dstMask != nil {\n"+ + " _, _, _, ma := dstMask.At(dmp.X + $0, dmp.Y + $1).RGBA()\n"+ + " $2r = $2r * ma / 0xffff\n"+ + " $2g = $2g * ma / 0xffff\n"+ + " $2b = $2b * ma / 0xffff\n"+ + " $2a = $2a * ma / 0xffff\n"+ + "}\n"+ + "$2a1 := 0xffff - $2a\n"+ + "dstColorRGBA64.R = uint16(qr*$2a1/0xffff + $2r)\n"+ + "dstColorRGBA64.G = uint16(qg*$2a1/0xffff + $2g)\n"+ + "dstColorRGBA64.B = uint16(qb*$2a1/0xffff + $2b)\n"+ + "dstColorRGBA64.A = uint16(qa*$2a1/0xffff + $2a)\n"+ + "dst.Set($0, $1, dstColor)", + ) + case "*image.RGBA": + return argf(args, ""+ + "$2a1 := (0xffff - $2a) * 0x101\n"+ + "dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*$2a1/0xffff + $2r) >> 8)\n"+ + "dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*$2a1/0xffff + $2g) >> 8)\n"+ + "dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*$2a1/0xffff + $2b) >> 8)\n"+ + "dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*$2a1/0xffff + $2a) >> 8)", + ) + } + + case "Src": + switch d.dType { + default: + log.Fatalf("bad dType %q", d.dType) + case "Image": + return argf(args, ""+ + "if dstMask != nil {\n"+ + " qr, qg, qb, qa := dst.At($0, $1).RGBA()\n"+ + " _, _, _, ma := dstMask.At(dmp.X + $0, dmp.Y + $1).RGBA()\n"+ + " pr = pr * ma / 0xffff\n"+ + " pg = pg * ma / 0xffff\n"+ + " pb = pb * ma / 0xffff\n"+ + " pa = pa * ma / 0xffff\n"+ + " $2a1 := 0xffff - ma\n"+ // Note that this is ma, not $2a. + " dstColorRGBA64.R = uint16(qr*$2a1/0xffff + $2r)\n"+ + " dstColorRGBA64.G = uint16(qg*$2a1/0xffff + $2g)\n"+ + " dstColorRGBA64.B = uint16(qb*$2a1/0xffff + $2b)\n"+ + " dstColorRGBA64.A = uint16(qa*$2a1/0xffff + $2a)\n"+ + " dst.Set($0, $1, dstColor)\n"+ + "} else {\n"+ + " dstColorRGBA64.R = uint16($2r)\n"+ + " dstColorRGBA64.G = uint16($2g)\n"+ + " dstColorRGBA64.B = uint16($2b)\n"+ + " dstColorRGBA64.A = uint16($2a)\n"+ + " dst.Set($0, $1, dstColor)\n"+ + "}", + ) + case "*image.RGBA": + switch d.sType { + default: + return argf(args, ""+ + "dst.Pix[d+0] = uint8($2r >> 8)\n"+ + "dst.Pix[d+1] = uint8($2g >> 8)\n"+ + "dst.Pix[d+2] = uint8($2b >> 8)\n"+ + "dst.Pix[d+3] = uint8($2a >> 8)", + ) + case "*image.Gray": + return argf(args, ""+ + "out := uint8($2r >> 8)\n"+ + "dst.Pix[d+0] = out\n"+ + "dst.Pix[d+1] = out\n"+ + "dst.Pix[d+2] = out\n"+ + "dst.Pix[d+3] = 0xff", + ) + case "*image.YCbCr": + return argf(args, ""+ + "dst.Pix[d+0] = uint8($2r >> 8)\n"+ + "dst.Pix[d+1] = uint8($2g >> 8)\n"+ + "dst.Pix[d+2] = uint8($2b >> 8)\n"+ + "dst.Pix[d+3] = 0xff", + ) + } + } + } + + case "outputf": + args, _ := splitArgs(suffix) + if len(args) != 5 { + return "" + } + ret := "" + + switch d.op { + case "Over": + switch d.dType { + default: + log.Fatalf("bad dType %q", d.dType) + case "Image": + ret = argf(args, ""+ + "qr, qg, qb, qa := dst.At($0, $1).RGBA()\n"+ + "$3r0 := uint32($2($3r * $4))\n"+ + "$3g0 := uint32($2($3g * $4))\n"+ + "$3b0 := uint32($2($3b * $4))\n"+ + "$3a0 := uint32($2($3a * $4))\n"+ + "if dstMask != nil {\n"+ + " _, _, _, ma := dstMask.At(dmp.X + $0, dmp.Y + $1).RGBA()\n"+ + " $3r0 = $3r0 * ma / 0xffff\n"+ + " $3g0 = $3g0 * ma / 0xffff\n"+ + " $3b0 = $3b0 * ma / 0xffff\n"+ + " $3a0 = $3a0 * ma / 0xffff\n"+ + "}\n"+ + "$3a1 := 0xffff - $3a0\n"+ + "dstColorRGBA64.R = uint16(qr*$3a1/0xffff + $3r0)\n"+ + "dstColorRGBA64.G = uint16(qg*$3a1/0xffff + $3g0)\n"+ + "dstColorRGBA64.B = uint16(qb*$3a1/0xffff + $3b0)\n"+ + "dstColorRGBA64.A = uint16(qa*$3a1/0xffff + $3a0)\n"+ + "dst.Set($0, $1, dstColor)", + ) + case "*image.RGBA": + ret = argf(args, ""+ + "$3r0 := uint32($2($3r * $4))\n"+ + "$3g0 := uint32($2($3g * $4))\n"+ + "$3b0 := uint32($2($3b * $4))\n"+ + "$3a0 := uint32($2($3a * $4))\n"+ + "$3a1 := (0xffff - uint32($3a0)) * 0x101\n"+ + "dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*$3a1/0xffff + $3r0) >> 8)\n"+ + "dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*$3a1/0xffff + $3g0) >> 8)\n"+ + "dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*$3a1/0xffff + $3b0) >> 8)\n"+ + "dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*$3a1/0xffff + $3a0) >> 8)", + ) + } + + case "Src": + switch d.dType { + default: + log.Fatalf("bad dType %q", d.dType) + case "Image": + ret = argf(args, ""+ + "if dstMask != nil {\n"+ + " qr, qg, qb, qa := dst.At($0, $1).RGBA()\n"+ + " _, _, _, ma := dstMask.At(dmp.X + $0, dmp.Y + $1).RGBA()\n"+ + " pr := uint32($2($3r * $4)) * ma / 0xffff\n"+ + " pg := uint32($2($3g * $4)) * ma / 0xffff\n"+ + " pb := uint32($2($3b * $4)) * ma / 0xffff\n"+ + " pa := uint32($2($3a * $4)) * ma / 0xffff\n"+ + " pa1 := 0xffff - ma\n"+ // Note that this is ma, not pa. + " dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)\n"+ + " dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)\n"+ + " dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)\n"+ + " dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)\n"+ + " dst.Set($0, $1, dstColor)\n"+ + "} else {\n"+ + " dstColorRGBA64.R = $2($3r * $4)\n"+ + " dstColorRGBA64.G = $2($3g * $4)\n"+ + " dstColorRGBA64.B = $2($3b * $4)\n"+ + " dstColorRGBA64.A = $2($3a * $4)\n"+ + " dst.Set($0, $1, dstColor)\n"+ + "}", + ) + case "*image.RGBA": + switch d.sType { + default: + ret = argf(args, ""+ + "dst.Pix[d+0] = uint8($2($3r * $4) >> 8)\n"+ + "dst.Pix[d+1] = uint8($2($3g * $4) >> 8)\n"+ + "dst.Pix[d+2] = uint8($2($3b * $4) >> 8)\n"+ + "dst.Pix[d+3] = uint8($2($3a * $4) >> 8)", + ) + case "*image.Gray": + ret = argf(args, ""+ + "out := uint8($2($3r * $4) >> 8)\n"+ + "dst.Pix[d+0] = out\n"+ + "dst.Pix[d+1] = out\n"+ + "dst.Pix[d+2] = out\n"+ + "dst.Pix[d+3] = 0xff", + ) + case "*image.YCbCr": + ret = argf(args, ""+ + "dst.Pix[d+0] = uint8($2($3r * $4) >> 8)\n"+ + "dst.Pix[d+1] = uint8($2($3g * $4) >> 8)\n"+ + "dst.Pix[d+2] = uint8($2($3b * $4) >> 8)\n"+ + "dst.Pix[d+3] = 0xff", + ) + } + } + } + + return strings.Replace(ret, " * 1)", ")", -1) + + case "srcf", "srcu": + lhs, eqOp := splitEq(prefix) + if lhs == "" { + return "" + } + args, extra := splitArgs(suffix) + if len(args) != 2 { + return "" + } + + tmp := "" + if dollar == "srcf" { + tmp = "u" + } + + // TODO: there's no need to multiply by 0x101 in the switch below if + // the next thing we're going to do is shift right by 8. + + buf := new(bytes.Buffer) + switch d.sType { + default: + log.Fatalf("bad sType %q", d.sType) + case "image.Image": + fmt.Fprintf(buf, ""+ + "%sr%s, %sg%s, %sb%s, %sa%s := src.At(%s, %s).RGBA()\n", + lhs, tmp, lhs, tmp, lhs, tmp, lhs, tmp, args[0], args[1], + ) + if d.dType == "" || d.dType == "Image" { + fmt.Fprintf(buf, ""+ + "if srcMask != nil {\n"+ + " _, _, _, ma := srcMask.At(smp.X+%s, smp.Y+%s).RGBA()\n"+ + " %sr%s = %sr%s * ma / 0xffff\n"+ + " %sg%s = %sg%s * ma / 0xffff\n"+ + " %sb%s = %sb%s * ma / 0xffff\n"+ + " %sa%s = %sa%s * ma / 0xffff\n"+ + "}\n", + args[0], args[1], + lhs, tmp, lhs, tmp, + lhs, tmp, lhs, tmp, + lhs, tmp, lhs, tmp, + lhs, tmp, lhs, tmp, + ) + } + case "*image.Gray": + fmt.Fprintf(buf, ""+ + "%si := %s\n"+ + "%sr%s := uint32(src.Pix[%si]) * 0x101\n", + lhs, pixOffset("src", args[0], args[1], "", "*src.Stride"), + lhs, tmp, lhs, + ) + case "*image.NRGBA": + fmt.Fprintf(buf, ""+ + "%si := %s\n"+ + "%sa%s := uint32(src.Pix[%si+3]) * 0x101\n"+ + "%sr%s := uint32(src.Pix[%si+0]) * %sa%s / 0xff\n"+ + "%sg%s := uint32(src.Pix[%si+1]) * %sa%s / 0xff\n"+ + "%sb%s := uint32(src.Pix[%si+2]) * %sa%s / 0xff\n", + lhs, pixOffset("src", args[0], args[1], "*4", "*src.Stride"), + lhs, tmp, lhs, + lhs, tmp, lhs, lhs, tmp, + lhs, tmp, lhs, lhs, tmp, + lhs, tmp, lhs, lhs, tmp, + ) + case "*image.RGBA": + fmt.Fprintf(buf, ""+ + "%si := %s\n"+ + "%sr%s := uint32(src.Pix[%si+0]) * 0x101\n"+ + "%sg%s := uint32(src.Pix[%si+1]) * 0x101\n"+ + "%sb%s := uint32(src.Pix[%si+2]) * 0x101\n"+ + "%sa%s := uint32(src.Pix[%si+3]) * 0x101\n", + lhs, pixOffset("src", args[0], args[1], "*4", "*src.Stride"), + lhs, tmp, lhs, + lhs, tmp, lhs, + lhs, tmp, lhs, + lhs, tmp, lhs, + ) + case "*image.YCbCr": + fmt.Fprintf(buf, ""+ + "%si := %s\n"+ + "%sj := %s\n"+ + "%s\n", + lhs, pixOffset("src", args[0], args[1], "", "*src.YStride"), + lhs, cOffset(args[0], args[1], d.sratio), + ycbcrToRGB(lhs, tmp), + ) + } + + if dollar == "srcf" { + switch d.sType { + default: + fmt.Fprintf(buf, ""+ + "%sr %s float64(%sru)%s\n"+ + "%sg %s float64(%sgu)%s\n"+ + "%sb %s float64(%sbu)%s\n"+ + "%sa %s float64(%sau)%s\n", + lhs, eqOp, lhs, extra, + lhs, eqOp, lhs, extra, + lhs, eqOp, lhs, extra, + lhs, eqOp, lhs, extra, + ) + case "*image.Gray": + fmt.Fprintf(buf, ""+ + "%sr %s float64(%sru)%s\n", + lhs, eqOp, lhs, extra, + ) + case "*image.YCbCr": + fmt.Fprintf(buf, ""+ + "%sr %s float64(%sru)%s\n"+ + "%sg %s float64(%sgu)%s\n"+ + "%sb %s float64(%sbu)%s\n", + lhs, eqOp, lhs, extra, + lhs, eqOp, lhs, extra, + lhs, eqOp, lhs, extra, + ) + } + } + + return strings.TrimSpace(buf.String()) + + case "tweakD": + if d.dType == "*image.RGBA" { + return "d += dst.Stride" + } + return ";" + + case "tweakDx": + if d.dType == "*image.RGBA" { + return strings.Replace(prefix, "dx++", "dx, d = dx+1, d+4", 1) + } + return prefix + + case "tweakDy": + if d.dType == "*image.RGBA" { + return strings.Replace(prefix, "for dy, s", "for _, s", 1) + } + return prefix + + case "tweakP": + switch d.sType { + case "*image.Gray": + if strings.HasPrefix(strings.TrimSpace(prefix), "pa * ") { + return "1," + } + return "pr," + case "*image.YCbCr": + if strings.HasPrefix(strings.TrimSpace(prefix), "pa * ") { + return "1," + } + } + return prefix + + case "tweakPr": + if d.sType == "*image.Gray" { + return "pr *= s.invTotalWeightFFFF" + } + return ";" + + case "tweakVarP": + switch d.sType { + case "*image.Gray": + return strings.Replace(prefix, "var pr, pg, pb, pa", "var pr", 1) + case "*image.YCbCr": + return strings.Replace(prefix, "var pr, pg, pb, pa", "var pr, pg, pb", 1) + } + return prefix + } + return "" +} + +func expnSwitch(op, dType string, expandBoth bool, template string) string { + if op == "" && dType != "anyDType" { + lines := []string{"switch op {"} + for _, op = range ops { + lines = append(lines, + fmt.Sprintf("case %s:", op), + expnSwitch(op, dType, expandBoth, template), + ) + } + lines = append(lines, "}") + return strings.Join(lines, "\n") + } + + switchVar := "dst" + if dType != "" { + switchVar = "src" + } + lines := []string{fmt.Sprintf("switch %s := %s.(type) {", switchVar, switchVar)} + + fallback, values := "Image", dTypes + if dType != "" { + fallback, values = "image.Image", sTypesForDType[dType] + } + for _, v := range values { + if dType != "" { + // v is the sType. Skip those always-opaque sTypes, where Over is + // equivalent to Src. + if op == "Over" && alwaysOpaque[v] { + continue + } + } + + if v == fallback { + lines = append(lines, "default:") + } else { + lines = append(lines, fmt.Sprintf("case %s:", v)) + } + + if dType != "" { + if v == "*image.YCbCr" { + lines = append(lines, expnSwitchYCbCr(op, dType, template)) + } else { + lines = append(lines, expnLine(template, &data{dType: dType, sType: v, op: op})) + } + } else if !expandBoth { + lines = append(lines, expnLine(template, &data{dType: v, op: op})) + } else { + lines = append(lines, expnSwitch(op, v, false, template)) + } + } + + lines = append(lines, "}") + return strings.Join(lines, "\n") +} + +func expnSwitchYCbCr(op, dType, template string) string { + lines := []string{ + "switch src.SubsampleRatio {", + "default:", + expnLine(template, &data{dType: dType, sType: "image.Image", op: op}), + } + for _, sratio := range subsampleRatios { + lines = append(lines, + fmt.Sprintf("case image.YCbCrSubsampleRatio%s:", sratio), + expnLine(template, &data{dType: dType, sType: "*image.YCbCr", sratio: sratio, op: op}), + ) + } + lines = append(lines, "}") + return strings.Join(lines, "\n") +} + +func argf(args []string, s string) string { + if len(args) > 9 { + panic("too many args") + } + for i, a := range args { + old := fmt.Sprintf("$%d", i) + s = strings.Replace(s, old, a, -1) + } + return s +} + +func pixOffset(m, x, y, xstride, ystride string) string { + return fmt.Sprintf("(%s-%s.Rect.Min.Y)%s + (%s-%s.Rect.Min.X)%s", y, m, ystride, x, m, xstride) +} + +func cOffset(x, y, sratio string) string { + switch sratio { + case "444": + return fmt.Sprintf("( %s - src.Rect.Min.Y )*src.CStride + ( %s - src.Rect.Min.X )", y, x) + case "422": + return fmt.Sprintf("( %s - src.Rect.Min.Y )*src.CStride + ((%s)/2 - src.Rect.Min.X/2)", y, x) + case "420": + return fmt.Sprintf("((%s)/2 - src.Rect.Min.Y/2)*src.CStride + ((%s)/2 - src.Rect.Min.X/2)", y, x) + case "440": + return fmt.Sprintf("((%s)/2 - src.Rect.Min.Y/2)*src.CStride + ( %s - src.Rect.Min.X )", y, x) + } + return fmt.Sprintf("unsupported sratio %q", sratio) +} + +func ycbcrToRGB(lhs, tmp string) string { + s := ` + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + $yy1 := int(src.Y[$i]) * 0x10101 + $cb1 := int(src.Cb[$j]) - 128 + $cr1 := int(src.Cr[$j]) - 128 + $r@ := ($yy1 + 91881*$cr1) >> 8 + $g@ := ($yy1 - 22554*$cb1 - 46802*$cr1) >> 8 + $b@ := ($yy1 + 116130*$cb1) >> 8 + if $r@ < 0 { + $r@ = 0 + } else if $r@ > 0xffff { + $r@ = 0xffff + } + if $g@ < 0 { + $g@ = 0 + } else if $g@ > 0xffff { + $g@ = 0xffff + } + if $b@ < 0 { + $b@ = 0 + } else if $b@ > 0xffff { + $b@ = 0xffff + } + ` + s = strings.Replace(s, "$", lhs, -1) + s = strings.Replace(s, "@", tmp, -1) + return s +} + +func split(s, sep string) (string, string) { + if i := strings.Index(s, sep); i >= 0 { + return strings.TrimSpace(s[:i]), strings.TrimSpace(s[i+len(sep):]) + } + return "", "" +} + +func splitEq(s string) (lhs, eqOp string) { + s = strings.TrimSpace(s) + if lhs, _ = split(s, ":="); lhs != "" { + return lhs, ":=" + } + if lhs, _ = split(s, "+="); lhs != "" { + return lhs, "+=" + } + return "", "" +} + +func splitArgs(s string) (args []string, extra string) { + s = strings.TrimSpace(s) + if s == "" || s[0] != '[' { + return nil, "" + } + s = s[1:] + + i := strings.IndexByte(s, ']') + if i < 0 { + return nil, "" + } + args, extra = strings.Split(s[:i], ","), s[i+1:] + for i := range args { + args[i] = strings.TrimSpace(args[i]) + } + return args, extra +} + +func relName(s string) string { + if i := strings.LastIndex(s, "."); i >= 0 { + return s[i+1:] + } + return s +} + +const ( + codeRoot = ` + func (z $receiver) Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, op Op, opts *Options) { + // Try to simplify a Scale to a Copy. + if dr.Size() == sr.Size() { + Copy(dst, dr.Min, src, sr, op, opts) + return + } + + var o Options + if opts != nil { + o = *opts + } + + // adr is the affected destination pixels. + adr := dst.Bounds().Intersect(dr) + adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP) + if adr.Empty() || sr.Empty() { + return + } + // Make adr relative to dr.Min. + adr = adr.Sub(dr.Min) + if op == Over && o.SrcMask == nil && opaque(src) { + op = Src + } + + // sr is the source pixels. If it extends beyond the src bounds, + // we cannot use the type-specific fast paths, as they access + // the Pix fields directly without bounds checking. + // + // Similarly, the fast paths assume that the masks are nil. + if o.DstMask != nil || o.SrcMask != nil || !sr.In(src.Bounds()) { + switch op { + case Over: + z.scale_Image_Image_Over(dst, dr, adr, src, sr, &o) + case Src: + z.scale_Image_Image_Src(dst, dr, adr, src, sr, &o) + } + } else if _, ok := src.(*image.Uniform); ok { + Draw(dst, dr, src, src.Bounds().Min, op) + } else { + $switch z.scale_$dTypeRN_$sTypeRN$sratio_$op(dst, dr, adr, src, sr, &o) + } + } + + func (z $receiver) Transform(dst Image, s2d f64.Aff3, src image.Image, sr image.Rectangle, op Op, opts *Options) { + // Try to simplify a Transform to a Copy. + if s2d[0] == 1 && s2d[1] == 0 && s2d[3] == 0 && s2d[4] == 1 { + dx := int(s2d[2]) + dy := int(s2d[5]) + if float64(dx) == s2d[2] && float64(dy) == s2d[5] { + Copy(dst, image.Point{X: sr.Min.X + dx, Y: sr.Min.X + dy}, src, sr, op, opts) + return + } + } + + var o Options + if opts != nil { + o = *opts + } + + dr := transformRect(&s2d, &sr) + // adr is the affected destination pixels. + adr := dst.Bounds().Intersect(dr) + adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP) + if adr.Empty() || sr.Empty() { + return + } + if op == Over && o.SrcMask == nil && opaque(src) { + op = Src + } + + d2s := invert(&s2d) + // bias is a translation of the mapping from dst coordinates to src + // coordinates such that the latter temporarily have non-negative X + // and Y coordinates. This allows us to write int(f) instead of + // int(math.Floor(f)), since "round to zero" and "round down" are + // equivalent when f >= 0, but the former is much cheaper. The X-- + // and Y-- are because the TransformLeaf methods have a "sx -= 0.5" + // adjustment. + bias := transformRect(&d2s, &adr).Min + bias.X-- + bias.Y-- + d2s[2] -= float64(bias.X) + d2s[5] -= float64(bias.Y) + // Make adr relative to dr.Min. + adr = adr.Sub(dr.Min) + // sr is the source pixels. If it extends beyond the src bounds, + // we cannot use the type-specific fast paths, as they access + // the Pix fields directly without bounds checking. + // + // Similarly, the fast paths assume that the masks are nil. + if o.DstMask != nil || o.SrcMask != nil || !sr.In(src.Bounds()) { + switch op { + case Over: + z.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias, &o) + case Src: + z.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o) + } + } else if u, ok := src.(*image.Uniform); ok { + transform_Uniform(dst, dr, adr, &d2s, u, sr, bias, op) + } else { + $switch z.transform_$dTypeRN_$sTypeRN$sratio_$op(dst, dr, adr, &d2s, src, sr, bias, &o) + } + } + ` + + codeNNScaleLeaf = ` + func (nnInterpolator) scale_$dTypeRN_$sTypeRN$sratio_$op(dst $dType, dr, adr image.Rectangle, src $sType, sr image.Rectangle, opts *Options) { + dw2 := uint64(dr.Dx()) * 2 + dh2 := uint64(dr.Dy()) * 2 + sw := uint64(sr.Dx()) + sh := uint64(sr.Dy()) + $preOuter + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + sy := (2*uint64(dy) + 1) * sh / dh2 + $preInner + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { $tweakDx + sx := (2*uint64(dx) + 1) * sw / dw2 + p := $srcu[sr.Min.X + int(sx), sr.Min.Y + int(sy)] + $outputu[dr.Min.X + int(dx), dr.Min.Y + int(dy), p] + } + } + } + ` + + codeNNTransformLeaf = ` + func (nnInterpolator) transform_$dTypeRN_$sTypeRN$sratio_$op(dst $dType, dr, adr image.Rectangle, d2s *f64.Aff3, src $sType, sr image.Rectangle, bias image.Point, opts *Options) { + $preOuter + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y + int(dy)) + 0.5 + $preInner + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { $tweakDx + dxf := float64(dr.Min.X + int(dx)) + 0.5 + sx0 := int(d2s[0]*dxf + d2s[1]*dyf + d2s[2]) + bias.X + sy0 := int(d2s[3]*dxf + d2s[4]*dyf + d2s[5]) + bias.Y + if !(image.Point{sx0, sy0}).In(sr) { + continue + } + p := $srcu[sx0, sy0] + $outputu[dr.Min.X + int(dx), dr.Min.Y + int(dy), p] + } + } + } + ` + + codeABLScaleLeaf = ` + func (ablInterpolator) scale_$dTypeRN_$sTypeRN$sratio_$op(dst $dType, dr, adr image.Rectangle, src $sType, sr image.Rectangle, opts *Options) { + sw := int32(sr.Dx()) + sh := int32(sr.Dy()) + yscale := float64(sh) / float64(dr.Dy()) + xscale := float64(sw) / float64(dr.Dx()) + swMinus1, shMinus1 := sw - 1, sh - 1 + $preOuter + + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + sy := (float64(dy)+0.5)*yscale - 0.5 + // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if + // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for + // sx, below. + sy0 := int32(sy) + yFrac0 := sy - float64(sy0) + yFrac1 := 1 - yFrac0 + sy1 := sy0 + 1 + if sy < 0 { + sy0, sy1 = 0, 0 + yFrac0, yFrac1 = 0, 1 + } else if sy1 > shMinus1 { + sy0, sy1 = shMinus1, shMinus1 + yFrac0, yFrac1 = 1, 0 + } + $preInner + + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { $tweakDx + sx := (float64(dx)+0.5)*xscale - 0.5 + sx0 := int32(sx) + xFrac0 := sx - float64(sx0) + xFrac1 := 1 - xFrac0 + sx1 := sx0 + 1 + if sx < 0 { + sx0, sx1 = 0, 0 + xFrac0, xFrac1 = 0, 1 + } else if sx1 > swMinus1 { + sx0, sx1 = swMinus1, swMinus1 + xFrac0, xFrac1 = 1, 0 + } + + s00 := $srcf[sr.Min.X + int(sx0), sr.Min.Y + int(sy0)] + s10 := $srcf[sr.Min.X + int(sx1), sr.Min.Y + int(sy0)] + $blend[xFrac1, s00, xFrac0, s10] + s01 := $srcf[sr.Min.X + int(sx0), sr.Min.Y + int(sy1)] + s11 := $srcf[sr.Min.X + int(sx1), sr.Min.Y + int(sy1)] + $blend[xFrac1, s01, xFrac0, s11] + $blend[yFrac1, s10, yFrac0, s11] + $convFtou[p, s11] + $outputu[dr.Min.X + int(dx), dr.Min.Y + int(dy), p] + } + } + } + ` + + codeABLTransformLeaf = ` + func (ablInterpolator) transform_$dTypeRN_$sTypeRN$sratio_$op(dst $dType, dr, adr image.Rectangle, d2s *f64.Aff3, src $sType, sr image.Rectangle, bias image.Point, opts *Options) { + $preOuter + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y + int(dy)) + 0.5 + $preInner + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { $tweakDx + dxf := float64(dr.Min.X + int(dx)) + 0.5 + sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] + sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] + if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { + continue + } + + sx -= 0.5 + sx0 := int(sx) + xFrac0 := sx - float64(sx0) + xFrac1 := 1 - xFrac0 + sx0 += bias.X + sx1 := sx0 + 1 + if sx0 < sr.Min.X { + sx0, sx1 = sr.Min.X, sr.Min.X + xFrac0, xFrac1 = 0, 1 + } else if sx1 >= sr.Max.X { + sx0, sx1 = sr.Max.X-1, sr.Max.X-1 + xFrac0, xFrac1 = 1, 0 + } + + sy -= 0.5 + sy0 := int(sy) + yFrac0 := sy - float64(sy0) + yFrac1 := 1 - yFrac0 + sy0 += bias.Y + sy1 := sy0 + 1 + if sy0 < sr.Min.Y { + sy0, sy1 = sr.Min.Y, sr.Min.Y + yFrac0, yFrac1 = 0, 1 + } else if sy1 >= sr.Max.Y { + sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 + yFrac0, yFrac1 = 1, 0 + } + + s00 := $srcf[sx0, sy0] + s10 := $srcf[sx1, sy0] + $blend[xFrac1, s00, xFrac0, s10] + s01 := $srcf[sx0, sy1] + s11 := $srcf[sx1, sy1] + $blend[xFrac1, s01, xFrac0, s11] + $blend[yFrac1, s10, yFrac0, s11] + $convFtou[p, s11] + $outputu[dr.Min.X + int(dx), dr.Min.Y + int(dy), p] + } + } + } + ` + + codeKernelRoot = ` + func (z *kernelScaler) Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, op Op, opts *Options) { + if z.dw != int32(dr.Dx()) || z.dh != int32(dr.Dy()) || z.sw != int32(sr.Dx()) || z.sh != int32(sr.Dy()) { + z.kernel.Scale(dst, dr, src, sr, op, opts) + return + } + + var o Options + if opts != nil { + o = *opts + } + + // adr is the affected destination pixels. + adr := dst.Bounds().Intersect(dr) + adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP) + if adr.Empty() || sr.Empty() { + return + } + // Make adr relative to dr.Min. + adr = adr.Sub(dr.Min) + if op == Over && o.SrcMask == nil && opaque(src) { + op = Src + } + + if _, ok := src.(*image.Uniform); ok && o.DstMask == nil && o.SrcMask == nil && sr.In(src.Bounds()) { + Draw(dst, dr, src, src.Bounds().Min, op) + return + } + + // Create a temporary buffer: + // scaleX distributes the source image's columns over the temporary image. + // scaleY distributes the temporary image's rows over the destination image. + var tmp [][4]float64 + if z.pool.New != nil { + tmpp := z.pool.Get().(*[][4]float64) + defer z.pool.Put(tmpp) + tmp = *tmpp + } else { + tmp = z.makeTmpBuf() + } + + // sr is the source pixels. If it extends beyond the src bounds, + // we cannot use the type-specific fast paths, as they access + // the Pix fields directly without bounds checking. + // + // Similarly, the fast paths assume that the masks are nil. + if o.SrcMask != nil || !sr.In(src.Bounds()) { + z.scaleX_Image(tmp, src, sr, &o) + } else { + $switchS z.scaleX_$sTypeRN$sratio(tmp, src, sr, &o) + } + + if o.DstMask != nil { + switch op { + case Over: + z.scaleY_Image_Over(dst, dr, adr, tmp, &o) + case Src: + z.scaleY_Image_Src(dst, dr, adr, tmp, &o) + } + } else { + $switchD z.scaleY_$dTypeRN_$op(dst, dr, adr, tmp, &o) + } + } + + func (q *Kernel) Transform(dst Image, s2d f64.Aff3, src image.Image, sr image.Rectangle, op Op, opts *Options) { + var o Options + if opts != nil { + o = *opts + } + + dr := transformRect(&s2d, &sr) + // adr is the affected destination pixels. + adr := dst.Bounds().Intersect(dr) + adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP) + if adr.Empty() || sr.Empty() { + return + } + if op == Over && o.SrcMask == nil && opaque(src) { + op = Src + } + d2s := invert(&s2d) + // bias is a translation of the mapping from dst coordinates to src + // coordinates such that the latter temporarily have non-negative X + // and Y coordinates. This allows us to write int(f) instead of + // int(math.Floor(f)), since "round to zero" and "round down" are + // equivalent when f >= 0, but the former is much cheaper. The X-- + // and Y-- are because the TransformLeaf methods have a "sx -= 0.5" + // adjustment. + bias := transformRect(&d2s, &adr).Min + bias.X-- + bias.Y-- + d2s[2] -= float64(bias.X) + d2s[5] -= float64(bias.Y) + // Make adr relative to dr.Min. + adr = adr.Sub(dr.Min) + + if u, ok := src.(*image.Uniform); ok && o.DstMask != nil && o.SrcMask != nil && sr.In(src.Bounds()) { + transform_Uniform(dst, dr, adr, &d2s, u, sr, bias, op) + return + } + + xscale := abs(d2s[0]) + if s := abs(d2s[1]); xscale < s { + xscale = s + } + yscale := abs(d2s[3]) + if s := abs(d2s[4]); yscale < s { + yscale = s + } + + // sr is the source pixels. If it extends beyond the src bounds, + // we cannot use the type-specific fast paths, as they access + // the Pix fields directly without bounds checking. + // + // Similarly, the fast paths assume that the masks are nil. + if o.DstMask != nil || o.SrcMask != nil || !sr.In(src.Bounds()) { + switch op { + case Over: + q.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o) + case Src: + q.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o) + } + } else { + $switch q.transform_$dTypeRN_$sTypeRN$sratio_$op(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o) + } + } + ` + + codeKernelScaleLeafX = ` + func (z *kernelScaler) scaleX_$sTypeRN$sratio(tmp [][4]float64, src $sType, sr image.Rectangle, opts *Options) { + t := 0 + $preKernelOuter + for y := int32(0); y < z.sh; y++ { + for _, s := range z.horizontal.sources { + var pr, pg, pb, pa float64 $tweakVarP + for _, c := range z.horizontal.contribs[s.i:s.j] { + p += $srcf[sr.Min.X + int(c.coord), sr.Min.Y + int(y)] * c.weight + } + $tweakPr + tmp[t] = [4]float64{ + pr * s.invTotalWeightFFFF, $tweakP + pg * s.invTotalWeightFFFF, $tweakP + pb * s.invTotalWeightFFFF, $tweakP + pa * s.invTotalWeightFFFF, $tweakP + } + t++ + } + } + } + ` + + codeKernelScaleLeafY = ` + func (z *kernelScaler) scaleY_$dTypeRN_$op(dst $dType, dr, adr image.Rectangle, tmp [][4]float64, opts *Options) { + $preOuter + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { + $preKernelInner + for dy, s := range z.vertical.sources[adr.Min.Y:adr.Max.Y] { $tweakDy + var pr, pg, pb, pa float64 + for _, c := range z.vertical.contribs[s.i:s.j] { + p := &tmp[c.coord*z.dw+dx] + pr += p[0] * c.weight + pg += p[1] * c.weight + pb += p[2] * c.weight + pa += p[3] * c.weight + } + $clampToAlpha + $outputf[dr.Min.X + int(dx), dr.Min.Y + int(adr.Min.Y + dy), ftou, p, s.invTotalWeight] + $tweakD + } + } + } + ` + + codeKernelTransformLeaf = ` + func (q *Kernel) transform_$dTypeRN_$sTypeRN$sratio_$op(dst $dType, dr, adr image.Rectangle, d2s *f64.Aff3, src $sType, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) { + // When shrinking, broaden the effective kernel support so that we still + // visit every source pixel. + xHalfWidth, xKernelArgScale := q.Support, 1.0 + if xscale > 1 { + xHalfWidth *= xscale + xKernelArgScale = 1 / xscale + } + yHalfWidth, yKernelArgScale := q.Support, 1.0 + if yscale > 1 { + yHalfWidth *= yscale + yKernelArgScale = 1 / yscale + } + + xWeights := make([]float64, 1 + 2*int(math.Ceil(xHalfWidth))) + yWeights := make([]float64, 1 + 2*int(math.Ceil(yHalfWidth))) + + $preOuter + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y + int(dy)) + 0.5 + $preInner + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { $tweakDx + dxf := float64(dr.Min.X + int(dx)) + 0.5 + sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] + sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] + if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { + continue + } + + // TODO: adjust the bias so that we can use int(f) instead + // of math.Floor(f) and math.Ceil(f). + sx += float64(bias.X) + sx -= 0.5 + ix := int(math.Floor(sx - xHalfWidth)) + if ix < sr.Min.X { + ix = sr.Min.X + } + jx := int(math.Ceil(sx + xHalfWidth)) + if jx > sr.Max.X { + jx = sr.Max.X + } + + totalXWeight := 0.0 + for kx := ix; kx < jx; kx++ { + xWeight := 0.0 + if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { + xWeight = q.At(t) + } + xWeights[kx - ix] = xWeight + totalXWeight += xWeight + } + for x := range xWeights[:jx-ix] { + xWeights[x] /= totalXWeight + } + + sy += float64(bias.Y) + sy -= 0.5 + iy := int(math.Floor(sy - yHalfWidth)) + if iy < sr.Min.Y { + iy = sr.Min.Y + } + jy := int(math.Ceil(sy + yHalfWidth)) + if jy > sr.Max.Y { + jy = sr.Max.Y + } + + totalYWeight := 0.0 + for ky := iy; ky < jy; ky++ { + yWeight := 0.0 + if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { + yWeight = q.At(t) + } + yWeights[ky - iy] = yWeight + totalYWeight += yWeight + } + for y := range yWeights[:jy-iy] { + yWeights[y] /= totalYWeight + } + + var pr, pg, pb, pa float64 $tweakVarP + for ky := iy; ky < jy; ky++ { + if yWeight := yWeights[ky - iy]; yWeight != 0 { + for kx := ix; kx < jx; kx++ { + if w := xWeights[kx - ix] * yWeight; w != 0 { + p += $srcf[kx, ky] * w + } + } + } + } + $clampToAlpha + $outputf[dr.Min.X + int(dx), dr.Min.Y + int(dy), fffftou, p, 1] + } + } + } + ` +) diff --git a/vendor/golang.org/x/image/draw/go1_8.go b/vendor/golang.org/x/image/draw/go1_8.go new file mode 100644 index 0000000..ec192b7 --- /dev/null +++ b/vendor/golang.org/x/image/draw/go1_8.go @@ -0,0 +1,49 @@ +// Copyright 2015 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// +build !go1.9,!go1.8.typealias + +package draw + +import ( + "image" + "image/color" + "image/draw" +) + +// Drawer contains the Draw method. +type Drawer interface { + // Draw aligns r.Min in dst with sp in src and then replaces the + // rectangle r in dst with the result of drawing src on dst. + Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) +} + +// Image is an image.Image with a Set method to change a single pixel. +type Image interface { + image.Image + Set(x, y int, c color.Color) +} + +// Op is a Porter-Duff compositing operator. +type Op int + +const ( + // Over specifies ``(src in mask) over dst''. + Over Op = Op(draw.Over) + // Src specifies ``src in mask''. + Src Op = Op(draw.Src) +) + +// Draw implements the Drawer interface by calling the Draw function with +// this Op. +func (op Op) Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) { + (draw.Op(op)).Draw(dst, r, src, sp) +} + +// Quantizer produces a palette for an image. +type Quantizer interface { + // Quantize appends up to cap(p) - len(p) colors to p and returns the + // updated palette suitable for converting m to a paletted image. + Quantize(p color.Palette, m image.Image) color.Palette +} diff --git a/vendor/golang.org/x/image/draw/go1_9.go b/vendor/golang.org/x/image/draw/go1_9.go new file mode 100644 index 0000000..fc548e9 --- /dev/null +++ b/vendor/golang.org/x/image/draw/go1_9.go @@ -0,0 +1,57 @@ +// Copyright 2016 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// +build go1.9 go1.8.typealias + +package draw + +import ( + "image/draw" +) + +// We use type aliases (new in Go 1.9) for the exported names from the standard +// library's image/draw package. This is not merely syntactic sugar for +// +// type Drawer draw.Drawer +// +// as aliasing means that the types in this package, such as draw.Image and +// draw.Op, are identical to the corresponding draw.Image and draw.Op types in +// the standard library. In comparison, prior to Go 1.9, the code in go1_8.go +// defines new types that mimic the old but are different types. +// +// The package documentation, in draw.go, explicitly gives the intent of this +// package: +// +// This package is a superset of and a drop-in replacement for the +// image/draw package in the standard library. +// +// Drop-in replacement means that I can replace all of my "image/draw" imports +// with "golang.org/x/image/draw", to access additional features in this +// package, and no further changes are required. That's mostly true, but not +// completely true unless we use type aliases. +// +// Without type aliases, users might need to import both "image/draw" and +// "golang.org/x/image/draw" in order to convert from two conceptually +// equivalent but different (from the compiler's point of view) types, such as +// from one draw.Op type to another draw.Op type, to satisfy some other +// interface or function signature. + +// Drawer contains the Draw method. +type Drawer = draw.Drawer + +// Image is an image.Image with a Set method to change a single pixel. +type Image = draw.Image + +// Op is a Porter-Duff compositing operator. +type Op = draw.Op + +const ( + // Over specifies ``(src in mask) over dst''. + Over Op = draw.Over + // Src specifies ``src in mask''. + Src Op = draw.Src +) + +// Quantizer produces a palette for an image. +type Quantizer = draw.Quantizer diff --git a/vendor/golang.org/x/image/draw/impl.go b/vendor/golang.org/x/image/draw/impl.go new file mode 100644 index 0000000..637887b --- /dev/null +++ b/vendor/golang.org/x/image/draw/impl.go @@ -0,0 +1,6668 @@ +// generated by "go run gen.go". DO NOT EDIT. + +package draw + +import ( + "image" + "image/color" + "math" + + "golang.org/x/image/math/f64" +) + +func (z nnInterpolator) Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, op Op, opts *Options) { + // Try to simplify a Scale to a Copy. + if dr.Size() == sr.Size() { + Copy(dst, dr.Min, src, sr, op, opts) + return + } + + var o Options + if opts != nil { + o = *opts + } + + // adr is the affected destination pixels. + adr := dst.Bounds().Intersect(dr) + adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP) + if adr.Empty() || sr.Empty() { + return + } + // Make adr relative to dr.Min. + adr = adr.Sub(dr.Min) + if op == Over && o.SrcMask == nil && opaque(src) { + op = Src + } + + // sr is the source pixels. If it extends beyond the src bounds, + // we cannot use the type-specific fast paths, as they access + // the Pix fields directly without bounds checking. + // + // Similarly, the fast paths assume that the masks are nil. + if o.DstMask != nil || o.SrcMask != nil || !sr.In(src.Bounds()) { + switch op { + case Over: + z.scale_Image_Image_Over(dst, dr, adr, src, sr, &o) + case Src: + z.scale_Image_Image_Src(dst, dr, adr, src, sr, &o) + } + } else if _, ok := src.(*image.Uniform); ok { + Draw(dst, dr, src, src.Bounds().Min, op) + } else { + switch op { + case Over: + switch dst := dst.(type) { + case *image.RGBA: + switch src := src.(type) { + case *image.NRGBA: + z.scale_RGBA_NRGBA_Over(dst, dr, adr, src, sr, &o) + case *image.RGBA: + z.scale_RGBA_RGBA_Over(dst, dr, adr, src, sr, &o) + default: + z.scale_RGBA_Image_Over(dst, dr, adr, src, sr, &o) + } + default: + switch src := src.(type) { + default: + z.scale_Image_Image_Over(dst, dr, adr, src, sr, &o) + } + } + case Src: + switch dst := dst.(type) { + case *image.RGBA: + switch src := src.(type) { + case *image.Gray: + z.scale_RGBA_Gray_Src(dst, dr, adr, src, sr, &o) + case *image.NRGBA: + z.scale_RGBA_NRGBA_Src(dst, dr, adr, src, sr, &o) + case *image.RGBA: + z.scale_RGBA_RGBA_Src(dst, dr, adr, src, sr, &o) + case *image.YCbCr: + switch src.SubsampleRatio { + default: + z.scale_RGBA_Image_Src(dst, dr, adr, src, sr, &o) + case image.YCbCrSubsampleRatio444: + z.scale_RGBA_YCbCr444_Src(dst, dr, adr, src, sr, &o) + case image.YCbCrSubsampleRatio422: + z.scale_RGBA_YCbCr422_Src(dst, dr, adr, src, sr, &o) + case image.YCbCrSubsampleRatio420: + z.scale_RGBA_YCbCr420_Src(dst, dr, adr, src, sr, &o) + case image.YCbCrSubsampleRatio440: + z.scale_RGBA_YCbCr440_Src(dst, dr, adr, src, sr, &o) + } + default: + z.scale_RGBA_Image_Src(dst, dr, adr, src, sr, &o) + } + default: + switch src := src.(type) { + default: + z.scale_Image_Image_Src(dst, dr, adr, src, sr, &o) + } + } + } + } +} + +func (z nnInterpolator) Transform(dst Image, s2d f64.Aff3, src image.Image, sr image.Rectangle, op Op, opts *Options) { + // Try to simplify a Transform to a Copy. + if s2d[0] == 1 && s2d[1] == 0 && s2d[3] == 0 && s2d[4] == 1 { + dx := int(s2d[2]) + dy := int(s2d[5]) + if float64(dx) == s2d[2] && float64(dy) == s2d[5] { + Copy(dst, image.Point{X: sr.Min.X + dx, Y: sr.Min.X + dy}, src, sr, op, opts) + return + } + } + + var o Options + if opts != nil { + o = *opts + } + + dr := transformRect(&s2d, &sr) + // adr is the affected destination pixels. + adr := dst.Bounds().Intersect(dr) + adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP) + if adr.Empty() || sr.Empty() { + return + } + if op == Over && o.SrcMask == nil && opaque(src) { + op = Src + } + + d2s := invert(&s2d) + // bias is a translation of the mapping from dst coordinates to src + // coordinates such that the latter temporarily have non-negative X + // and Y coordinates. This allows us to write int(f) instead of + // int(math.Floor(f)), since "round to zero" and "round down" are + // equivalent when f >= 0, but the former is much cheaper. The X-- + // and Y-- are because the TransformLeaf methods have a "sx -= 0.5" + // adjustment. + bias := transformRect(&d2s, &adr).Min + bias.X-- + bias.Y-- + d2s[2] -= float64(bias.X) + d2s[5] -= float64(bias.Y) + // Make adr relative to dr.Min. + adr = adr.Sub(dr.Min) + // sr is the source pixels. If it extends beyond the src bounds, + // we cannot use the type-specific fast paths, as they access + // the Pix fields directly without bounds checking. + // + // Similarly, the fast paths assume that the masks are nil. + if o.DstMask != nil || o.SrcMask != nil || !sr.In(src.Bounds()) { + switch op { + case Over: + z.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias, &o) + case Src: + z.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o) + } + } else if u, ok := src.(*image.Uniform); ok { + transform_Uniform(dst, dr, adr, &d2s, u, sr, bias, op) + } else { + switch op { + case Over: + switch dst := dst.(type) { + case *image.RGBA: + switch src := src.(type) { + case *image.NRGBA: + z.transform_RGBA_NRGBA_Over(dst, dr, adr, &d2s, src, sr, bias, &o) + case *image.RGBA: + z.transform_RGBA_RGBA_Over(dst, dr, adr, &d2s, src, sr, bias, &o) + default: + z.transform_RGBA_Image_Over(dst, dr, adr, &d2s, src, sr, bias, &o) + } + default: + switch src := src.(type) { + default: + z.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias, &o) + } + } + case Src: + switch dst := dst.(type) { + case *image.RGBA: + switch src := src.(type) { + case *image.Gray: + z.transform_RGBA_Gray_Src(dst, dr, adr, &d2s, src, sr, bias, &o) + case *image.NRGBA: + z.transform_RGBA_NRGBA_Src(dst, dr, adr, &d2s, src, sr, bias, &o) + case *image.RGBA: + z.transform_RGBA_RGBA_Src(dst, dr, adr, &d2s, src, sr, bias, &o) + case *image.YCbCr: + switch src.SubsampleRatio { + default: + z.transform_RGBA_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o) + case image.YCbCrSubsampleRatio444: + z.transform_RGBA_YCbCr444_Src(dst, dr, adr, &d2s, src, sr, bias, &o) + case image.YCbCrSubsampleRatio422: + z.transform_RGBA_YCbCr422_Src(dst, dr, adr, &d2s, src, sr, bias, &o) + case image.YCbCrSubsampleRatio420: + z.transform_RGBA_YCbCr420_Src(dst, dr, adr, &d2s, src, sr, bias, &o) + case image.YCbCrSubsampleRatio440: + z.transform_RGBA_YCbCr440_Src(dst, dr, adr, &d2s, src, sr, bias, &o) + } + default: + z.transform_RGBA_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o) + } + default: + switch src := src.(type) { + default: + z.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o) + } + } + } + } +} + +func (nnInterpolator) scale_RGBA_Gray_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.Gray, sr image.Rectangle, opts *Options) { + dw2 := uint64(dr.Dx()) * 2 + dh2 := uint64(dr.Dy()) * 2 + sw := uint64(sr.Dx()) + sh := uint64(sr.Dy()) + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + sy := (2*uint64(dy) + 1) * sh / dh2 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + sx := (2*uint64(dx) + 1) * sw / dw2 + pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx) - src.Rect.Min.X) + pr := uint32(src.Pix[pi]) * 0x101 + out := uint8(pr >> 8) + dst.Pix[d+0] = out + dst.Pix[d+1] = out + dst.Pix[d+2] = out + dst.Pix[d+3] = 0xff + } + } +} + +func (nnInterpolator) scale_RGBA_NRGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, src *image.NRGBA, sr image.Rectangle, opts *Options) { + dw2 := uint64(dr.Dx()) * 2 + dh2 := uint64(dr.Dy()) * 2 + sw := uint64(sr.Dx()) + sh := uint64(sr.Dy()) + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + sy := (2*uint64(dy) + 1) * sh / dh2 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + sx := (2*uint64(dx) + 1) * sw / dw2 + pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx)-src.Rect.Min.X)*4 + pa := uint32(src.Pix[pi+3]) * 0x101 + pr := uint32(src.Pix[pi+0]) * pa / 0xff + pg := uint32(src.Pix[pi+1]) * pa / 0xff + pb := uint32(src.Pix[pi+2]) * pa / 0xff + pa1 := (0xffff - pa) * 0x101 + dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8) + dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8) + dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8) + dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8) + } + } +} + +func (nnInterpolator) scale_RGBA_NRGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.NRGBA, sr image.Rectangle, opts *Options) { + dw2 := uint64(dr.Dx()) * 2 + dh2 := uint64(dr.Dy()) * 2 + sw := uint64(sr.Dx()) + sh := uint64(sr.Dy()) + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + sy := (2*uint64(dy) + 1) * sh / dh2 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + sx := (2*uint64(dx) + 1) * sw / dw2 + pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx)-src.Rect.Min.X)*4 + pa := uint32(src.Pix[pi+3]) * 0x101 + pr := uint32(src.Pix[pi+0]) * pa / 0xff + pg := uint32(src.Pix[pi+1]) * pa / 0xff + pb := uint32(src.Pix[pi+2]) * pa / 0xff + dst.Pix[d+0] = uint8(pr >> 8) + dst.Pix[d+1] = uint8(pg >> 8) + dst.Pix[d+2] = uint8(pb >> 8) + dst.Pix[d+3] = uint8(pa >> 8) + } + } +} + +func (nnInterpolator) scale_RGBA_RGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, src *image.RGBA, sr image.Rectangle, opts *Options) { + dw2 := uint64(dr.Dx()) * 2 + dh2 := uint64(dr.Dy()) * 2 + sw := uint64(sr.Dx()) + sh := uint64(sr.Dy()) + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + sy := (2*uint64(dy) + 1) * sh / dh2 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + sx := (2*uint64(dx) + 1) * sw / dw2 + pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx)-src.Rect.Min.X)*4 + pr := uint32(src.Pix[pi+0]) * 0x101 + pg := uint32(src.Pix[pi+1]) * 0x101 + pb := uint32(src.Pix[pi+2]) * 0x101 + pa := uint32(src.Pix[pi+3]) * 0x101 + pa1 := (0xffff - pa) * 0x101 + dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8) + dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8) + dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8) + dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8) + } + } +} + +func (nnInterpolator) scale_RGBA_RGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.RGBA, sr image.Rectangle, opts *Options) { + dw2 := uint64(dr.Dx()) * 2 + dh2 := uint64(dr.Dy()) * 2 + sw := uint64(sr.Dx()) + sh := uint64(sr.Dy()) + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + sy := (2*uint64(dy) + 1) * sh / dh2 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + sx := (2*uint64(dx) + 1) * sw / dw2 + pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx)-src.Rect.Min.X)*4 + pr := uint32(src.Pix[pi+0]) * 0x101 + pg := uint32(src.Pix[pi+1]) * 0x101 + pb := uint32(src.Pix[pi+2]) * 0x101 + pa := uint32(src.Pix[pi+3]) * 0x101 + dst.Pix[d+0] = uint8(pr >> 8) + dst.Pix[d+1] = uint8(pg >> 8) + dst.Pix[d+2] = uint8(pb >> 8) + dst.Pix[d+3] = uint8(pa >> 8) + } + } +} + +func (nnInterpolator) scale_RGBA_YCbCr444_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) { + dw2 := uint64(dr.Dx()) * 2 + dh2 := uint64(dr.Dy()) * 2 + sw := uint64(sr.Dx()) + sh := uint64(sr.Dy()) + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + sy := (2*uint64(dy) + 1) * sh / dh2 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + sx := (2*uint64(dx) + 1) * sw / dw2 + pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx) - src.Rect.Min.X) + pj := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx) - src.Rect.Min.X) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + pyy1 := int(src.Y[pi]) * 0x10101 + pcb1 := int(src.Cb[pj]) - 128 + pcr1 := int(src.Cr[pj]) - 128 + pr := (pyy1 + 91881*pcr1) >> 8 + pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 + pb := (pyy1 + 116130*pcb1) >> 8 + if pr < 0 { + pr = 0 + } else if pr > 0xffff { + pr = 0xffff + } + if pg < 0 { + pg = 0 + } else if pg > 0xffff { + pg = 0xffff + } + if pb < 0 { + pb = 0 + } else if pb > 0xffff { + pb = 0xffff + } + dst.Pix[d+0] = uint8(pr >> 8) + dst.Pix[d+1] = uint8(pg >> 8) + dst.Pix[d+2] = uint8(pb >> 8) + dst.Pix[d+3] = 0xff + } + } +} + +func (nnInterpolator) scale_RGBA_YCbCr422_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) { + dw2 := uint64(dr.Dx()) * 2 + dh2 := uint64(dr.Dy()) * 2 + sw := uint64(sr.Dx()) + sh := uint64(sr.Dy()) + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + sy := (2*uint64(dy) + 1) * sh / dh2 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + sx := (2*uint64(dx) + 1) * sw / dw2 + pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx) - src.Rect.Min.X) + pj := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx))/2 - src.Rect.Min.X/2) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + pyy1 := int(src.Y[pi]) * 0x10101 + pcb1 := int(src.Cb[pj]) - 128 + pcr1 := int(src.Cr[pj]) - 128 + pr := (pyy1 + 91881*pcr1) >> 8 + pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 + pb := (pyy1 + 116130*pcb1) >> 8 + if pr < 0 { + pr = 0 + } else if pr > 0xffff { + pr = 0xffff + } + if pg < 0 { + pg = 0 + } else if pg > 0xffff { + pg = 0xffff + } + if pb < 0 { + pb = 0 + } else if pb > 0xffff { + pb = 0xffff + } + dst.Pix[d+0] = uint8(pr >> 8) + dst.Pix[d+1] = uint8(pg >> 8) + dst.Pix[d+2] = uint8(pb >> 8) + dst.Pix[d+3] = 0xff + } + } +} + +func (nnInterpolator) scale_RGBA_YCbCr420_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) { + dw2 := uint64(dr.Dx()) * 2 + dh2 := uint64(dr.Dy()) * 2 + sw := uint64(sr.Dx()) + sh := uint64(sr.Dy()) + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + sy := (2*uint64(dy) + 1) * sh / dh2 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + sx := (2*uint64(dx) + 1) * sw / dw2 + pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx) - src.Rect.Min.X) + pj := ((sr.Min.Y+int(sy))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx))/2 - src.Rect.Min.X/2) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + pyy1 := int(src.Y[pi]) * 0x10101 + pcb1 := int(src.Cb[pj]) - 128 + pcr1 := int(src.Cr[pj]) - 128 + pr := (pyy1 + 91881*pcr1) >> 8 + pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 + pb := (pyy1 + 116130*pcb1) >> 8 + if pr < 0 { + pr = 0 + } else if pr > 0xffff { + pr = 0xffff + } + if pg < 0 { + pg = 0 + } else if pg > 0xffff { + pg = 0xffff + } + if pb < 0 { + pb = 0 + } else if pb > 0xffff { + pb = 0xffff + } + dst.Pix[d+0] = uint8(pr >> 8) + dst.Pix[d+1] = uint8(pg >> 8) + dst.Pix[d+2] = uint8(pb >> 8) + dst.Pix[d+3] = 0xff + } + } +} + +func (nnInterpolator) scale_RGBA_YCbCr440_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) { + dw2 := uint64(dr.Dx()) * 2 + dh2 := uint64(dr.Dy()) * 2 + sw := uint64(sr.Dx()) + sh := uint64(sr.Dy()) + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + sy := (2*uint64(dy) + 1) * sh / dh2 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + sx := (2*uint64(dx) + 1) * sw / dw2 + pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx) - src.Rect.Min.X) + pj := ((sr.Min.Y+int(sy))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx) - src.Rect.Min.X) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + pyy1 := int(src.Y[pi]) * 0x10101 + pcb1 := int(src.Cb[pj]) - 128 + pcr1 := int(src.Cr[pj]) - 128 + pr := (pyy1 + 91881*pcr1) >> 8 + pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 + pb := (pyy1 + 116130*pcb1) >> 8 + if pr < 0 { + pr = 0 + } else if pr > 0xffff { + pr = 0xffff + } + if pg < 0 { + pg = 0 + } else if pg > 0xffff { + pg = 0xffff + } + if pb < 0 { + pb = 0 + } else if pb > 0xffff { + pb = 0xffff + } + dst.Pix[d+0] = uint8(pr >> 8) + dst.Pix[d+1] = uint8(pg >> 8) + dst.Pix[d+2] = uint8(pb >> 8) + dst.Pix[d+3] = 0xff + } + } +} + +func (nnInterpolator) scale_RGBA_Image_Over(dst *image.RGBA, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) { + dw2 := uint64(dr.Dx()) * 2 + dh2 := uint64(dr.Dy()) * 2 + sw := uint64(sr.Dx()) + sh := uint64(sr.Dy()) + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + sy := (2*uint64(dy) + 1) * sh / dh2 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + sx := (2*uint64(dx) + 1) * sw / dw2 + pr, pg, pb, pa := src.At(sr.Min.X+int(sx), sr.Min.Y+int(sy)).RGBA() + pa1 := (0xffff - pa) * 0x101 + dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8) + dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8) + dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8) + dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8) + } + } +} + +func (nnInterpolator) scale_RGBA_Image_Src(dst *image.RGBA, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) { + dw2 := uint64(dr.Dx()) * 2 + dh2 := uint64(dr.Dy()) * 2 + sw := uint64(sr.Dx()) + sh := uint64(sr.Dy()) + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + sy := (2*uint64(dy) + 1) * sh / dh2 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + sx := (2*uint64(dx) + 1) * sw / dw2 + pr, pg, pb, pa := src.At(sr.Min.X+int(sx), sr.Min.Y+int(sy)).RGBA() + dst.Pix[d+0] = uint8(pr >> 8) + dst.Pix[d+1] = uint8(pg >> 8) + dst.Pix[d+2] = uint8(pb >> 8) + dst.Pix[d+3] = uint8(pa >> 8) + } + } +} + +func (nnInterpolator) scale_Image_Image_Over(dst Image, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) { + dw2 := uint64(dr.Dx()) * 2 + dh2 := uint64(dr.Dy()) * 2 + sw := uint64(sr.Dx()) + sh := uint64(sr.Dy()) + srcMask, smp := opts.SrcMask, opts.SrcMaskP + dstMask, dmp := opts.DstMask, opts.DstMaskP + dstColorRGBA64 := &color.RGBA64{} + dstColor := color.Color(dstColorRGBA64) + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + sy := (2*uint64(dy) + 1) * sh / dh2 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { + sx := (2*uint64(dx) + 1) * sw / dw2 + pr, pg, pb, pa := src.At(sr.Min.X+int(sx), sr.Min.Y+int(sy)).RGBA() + if srcMask != nil { + _, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx), smp.Y+sr.Min.Y+int(sy)).RGBA() + pr = pr * ma / 0xffff + pg = pg * ma / 0xffff + pb = pb * ma / 0xffff + pa = pa * ma / 0xffff + } + qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA() + if dstMask != nil { + _, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA() + pr = pr * ma / 0xffff + pg = pg * ma / 0xffff + pb = pb * ma / 0xffff + pa = pa * ma / 0xffff + } + pa1 := 0xffff - pa + dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr) + dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg) + dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb) + dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa) + dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor) + } + } +} + +func (nnInterpolator) scale_Image_Image_Src(dst Image, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) { + dw2 := uint64(dr.Dx()) * 2 + dh2 := uint64(dr.Dy()) * 2 + sw := uint64(sr.Dx()) + sh := uint64(sr.Dy()) + srcMask, smp := opts.SrcMask, opts.SrcMaskP + dstMask, dmp := opts.DstMask, opts.DstMaskP + dstColorRGBA64 := &color.RGBA64{} + dstColor := color.Color(dstColorRGBA64) + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + sy := (2*uint64(dy) + 1) * sh / dh2 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { + sx := (2*uint64(dx) + 1) * sw / dw2 + pr, pg, pb, pa := src.At(sr.Min.X+int(sx), sr.Min.Y+int(sy)).RGBA() + if srcMask != nil { + _, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx), smp.Y+sr.Min.Y+int(sy)).RGBA() + pr = pr * ma / 0xffff + pg = pg * ma / 0xffff + pb = pb * ma / 0xffff + pa = pa * ma / 0xffff + } + if dstMask != nil { + qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA() + _, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA() + pr = pr * ma / 0xffff + pg = pg * ma / 0xffff + pb = pb * ma / 0xffff + pa = pa * ma / 0xffff + pa1 := 0xffff - ma + dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr) + dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg) + dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb) + dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa) + dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor) + } else { + dstColorRGBA64.R = uint16(pr) + dstColorRGBA64.G = uint16(pg) + dstColorRGBA64.B = uint16(pb) + dstColorRGBA64.A = uint16(pa) + dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor) + } + } + } +} + +func (nnInterpolator) transform_RGBA_Gray_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.Gray, sr image.Rectangle, bias image.Point, opts *Options) { + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X + sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y + if !(image.Point{sx0, sy0}).In(sr) { + continue + } + pi := (sy0-src.Rect.Min.Y)*src.Stride + (sx0 - src.Rect.Min.X) + pr := uint32(src.Pix[pi]) * 0x101 + out := uint8(pr >> 8) + dst.Pix[d+0] = out + dst.Pix[d+1] = out + dst.Pix[d+2] = out + dst.Pix[d+3] = 0xff + } + } +} + +func (nnInterpolator) transform_RGBA_NRGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point, opts *Options) { + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X + sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y + if !(image.Point{sx0, sy0}).In(sr) { + continue + } + pi := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4 + pa := uint32(src.Pix[pi+3]) * 0x101 + pr := uint32(src.Pix[pi+0]) * pa / 0xff + pg := uint32(src.Pix[pi+1]) * pa / 0xff + pb := uint32(src.Pix[pi+2]) * pa / 0xff + pa1 := (0xffff - pa) * 0x101 + dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8) + dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8) + dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8) + dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8) + } + } +} + +func (nnInterpolator) transform_RGBA_NRGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point, opts *Options) { + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X + sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y + if !(image.Point{sx0, sy0}).In(sr) { + continue + } + pi := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4 + pa := uint32(src.Pix[pi+3]) * 0x101 + pr := uint32(src.Pix[pi+0]) * pa / 0xff + pg := uint32(src.Pix[pi+1]) * pa / 0xff + pb := uint32(src.Pix[pi+2]) * pa / 0xff + dst.Pix[d+0] = uint8(pr >> 8) + dst.Pix[d+1] = uint8(pg >> 8) + dst.Pix[d+2] = uint8(pb >> 8) + dst.Pix[d+3] = uint8(pa >> 8) + } + } +} + +func (nnInterpolator) transform_RGBA_RGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point, opts *Options) { + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X + sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y + if !(image.Point{sx0, sy0}).In(sr) { + continue + } + pi := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4 + pr := uint32(src.Pix[pi+0]) * 0x101 + pg := uint32(src.Pix[pi+1]) * 0x101 + pb := uint32(src.Pix[pi+2]) * 0x101 + pa := uint32(src.Pix[pi+3]) * 0x101 + pa1 := (0xffff - pa) * 0x101 + dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8) + dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8) + dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8) + dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8) + } + } +} + +func (nnInterpolator) transform_RGBA_RGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point, opts *Options) { + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X + sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y + if !(image.Point{sx0, sy0}).In(sr) { + continue + } + pi := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4 + pr := uint32(src.Pix[pi+0]) * 0x101 + pg := uint32(src.Pix[pi+1]) * 0x101 + pb := uint32(src.Pix[pi+2]) * 0x101 + pa := uint32(src.Pix[pi+3]) * 0x101 + dst.Pix[d+0] = uint8(pr >> 8) + dst.Pix[d+1] = uint8(pg >> 8) + dst.Pix[d+2] = uint8(pb >> 8) + dst.Pix[d+3] = uint8(pa >> 8) + } + } +} + +func (nnInterpolator) transform_RGBA_YCbCr444_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) { + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X + sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y + if !(image.Point{sx0, sy0}).In(sr) { + continue + } + pi := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) + pj := (sy0-src.Rect.Min.Y)*src.CStride + (sx0 - src.Rect.Min.X) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + pyy1 := int(src.Y[pi]) * 0x10101 + pcb1 := int(src.Cb[pj]) - 128 + pcr1 := int(src.Cr[pj]) - 128 + pr := (pyy1 + 91881*pcr1) >> 8 + pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 + pb := (pyy1 + 116130*pcb1) >> 8 + if pr < 0 { + pr = 0 + } else if pr > 0xffff { + pr = 0xffff + } + if pg < 0 { + pg = 0 + } else if pg > 0xffff { + pg = 0xffff + } + if pb < 0 { + pb = 0 + } else if pb > 0xffff { + pb = 0xffff + } + dst.Pix[d+0] = uint8(pr >> 8) + dst.Pix[d+1] = uint8(pg >> 8) + dst.Pix[d+2] = uint8(pb >> 8) + dst.Pix[d+3] = 0xff + } + } +} + +func (nnInterpolator) transform_RGBA_YCbCr422_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) { + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X + sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y + if !(image.Point{sx0, sy0}).In(sr) { + continue + } + pi := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) + pj := (sy0-src.Rect.Min.Y)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + pyy1 := int(src.Y[pi]) * 0x10101 + pcb1 := int(src.Cb[pj]) - 128 + pcr1 := int(src.Cr[pj]) - 128 + pr := (pyy1 + 91881*pcr1) >> 8 + pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 + pb := (pyy1 + 116130*pcb1) >> 8 + if pr < 0 { + pr = 0 + } else if pr > 0xffff { + pr = 0xffff + } + if pg < 0 { + pg = 0 + } else if pg > 0xffff { + pg = 0xffff + } + if pb < 0 { + pb = 0 + } else if pb > 0xffff { + pb = 0xffff + } + dst.Pix[d+0] = uint8(pr >> 8) + dst.Pix[d+1] = uint8(pg >> 8) + dst.Pix[d+2] = uint8(pb >> 8) + dst.Pix[d+3] = 0xff + } + } +} + +func (nnInterpolator) transform_RGBA_YCbCr420_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) { + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X + sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y + if !(image.Point{sx0, sy0}).In(sr) { + continue + } + pi := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) + pj := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + pyy1 := int(src.Y[pi]) * 0x10101 + pcb1 := int(src.Cb[pj]) - 128 + pcr1 := int(src.Cr[pj]) - 128 + pr := (pyy1 + 91881*pcr1) >> 8 + pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 + pb := (pyy1 + 116130*pcb1) >> 8 + if pr < 0 { + pr = 0 + } else if pr > 0xffff { + pr = 0xffff + } + if pg < 0 { + pg = 0 + } else if pg > 0xffff { + pg = 0xffff + } + if pb < 0 { + pb = 0 + } else if pb > 0xffff { + pb = 0xffff + } + dst.Pix[d+0] = uint8(pr >> 8) + dst.Pix[d+1] = uint8(pg >> 8) + dst.Pix[d+2] = uint8(pb >> 8) + dst.Pix[d+3] = 0xff + } + } +} + +func (nnInterpolator) transform_RGBA_YCbCr440_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) { + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X + sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y + if !(image.Point{sx0, sy0}).In(sr) { + continue + } + pi := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) + pj := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + (sx0 - src.Rect.Min.X) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + pyy1 := int(src.Y[pi]) * 0x10101 + pcb1 := int(src.Cb[pj]) - 128 + pcr1 := int(src.Cr[pj]) - 128 + pr := (pyy1 + 91881*pcr1) >> 8 + pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 + pb := (pyy1 + 116130*pcb1) >> 8 + if pr < 0 { + pr = 0 + } else if pr > 0xffff { + pr = 0xffff + } + if pg < 0 { + pg = 0 + } else if pg > 0xffff { + pg = 0xffff + } + if pb < 0 { + pb = 0 + } else if pb > 0xffff { + pb = 0xffff + } + dst.Pix[d+0] = uint8(pr >> 8) + dst.Pix[d+1] = uint8(pg >> 8) + dst.Pix[d+2] = uint8(pb >> 8) + dst.Pix[d+3] = 0xff + } + } +} + +func (nnInterpolator) transform_RGBA_Image_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) { + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X + sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y + if !(image.Point{sx0, sy0}).In(sr) { + continue + } + pr, pg, pb, pa := src.At(sx0, sy0).RGBA() + pa1 := (0xffff - pa) * 0x101 + dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8) + dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8) + dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8) + dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8) + } + } +} + +func (nnInterpolator) transform_RGBA_Image_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) { + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X + sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y + if !(image.Point{sx0, sy0}).In(sr) { + continue + } + pr, pg, pb, pa := src.At(sx0, sy0).RGBA() + dst.Pix[d+0] = uint8(pr >> 8) + dst.Pix[d+1] = uint8(pg >> 8) + dst.Pix[d+2] = uint8(pb >> 8) + dst.Pix[d+3] = uint8(pa >> 8) + } + } +} + +func (nnInterpolator) transform_Image_Image_Over(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) { + srcMask, smp := opts.SrcMask, opts.SrcMaskP + dstMask, dmp := opts.DstMask, opts.DstMaskP + dstColorRGBA64 := &color.RGBA64{} + dstColor := color.Color(dstColorRGBA64) + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X + sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y + if !(image.Point{sx0, sy0}).In(sr) { + continue + } + pr, pg, pb, pa := src.At(sx0, sy0).RGBA() + if srcMask != nil { + _, _, _, ma := srcMask.At(smp.X+sx0, smp.Y+sy0).RGBA() + pr = pr * ma / 0xffff + pg = pg * ma / 0xffff + pb = pb * ma / 0xffff + pa = pa * ma / 0xffff + } + qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA() + if dstMask != nil { + _, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA() + pr = pr * ma / 0xffff + pg = pg * ma / 0xffff + pb = pb * ma / 0xffff + pa = pa * ma / 0xffff + } + pa1 := 0xffff - pa + dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr) + dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg) + dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb) + dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa) + dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor) + } + } +} + +func (nnInterpolator) transform_Image_Image_Src(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) { + srcMask, smp := opts.SrcMask, opts.SrcMaskP + dstMask, dmp := opts.DstMask, opts.DstMaskP + dstColorRGBA64 := &color.RGBA64{} + dstColor := color.Color(dstColorRGBA64) + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X + sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y + if !(image.Point{sx0, sy0}).In(sr) { + continue + } + pr, pg, pb, pa := src.At(sx0, sy0).RGBA() + if srcMask != nil { + _, _, _, ma := srcMask.At(smp.X+sx0, smp.Y+sy0).RGBA() + pr = pr * ma / 0xffff + pg = pg * ma / 0xffff + pb = pb * ma / 0xffff + pa = pa * ma / 0xffff + } + if dstMask != nil { + qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA() + _, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA() + pr = pr * ma / 0xffff + pg = pg * ma / 0xffff + pb = pb * ma / 0xffff + pa = pa * ma / 0xffff + pa1 := 0xffff - ma + dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr) + dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg) + dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb) + dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa) + dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor) + } else { + dstColorRGBA64.R = uint16(pr) + dstColorRGBA64.G = uint16(pg) + dstColorRGBA64.B = uint16(pb) + dstColorRGBA64.A = uint16(pa) + dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor) + } + } + } +} + +func (z ablInterpolator) Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, op Op, opts *Options) { + // Try to simplify a Scale to a Copy. + if dr.Size() == sr.Size() { + Copy(dst, dr.Min, src, sr, op, opts) + return + } + + var o Options + if opts != nil { + o = *opts + } + + // adr is the affected destination pixels. + adr := dst.Bounds().Intersect(dr) + adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP) + if adr.Empty() || sr.Empty() { + return + } + // Make adr relative to dr.Min. + adr = adr.Sub(dr.Min) + if op == Over && o.SrcMask == nil && opaque(src) { + op = Src + } + + // sr is the source pixels. If it extends beyond the src bounds, + // we cannot use the type-specific fast paths, as they access + // the Pix fields directly without bounds checking. + // + // Similarly, the fast paths assume that the masks are nil. + if o.DstMask != nil || o.SrcMask != nil || !sr.In(src.Bounds()) { + switch op { + case Over: + z.scale_Image_Image_Over(dst, dr, adr, src, sr, &o) + case Src: + z.scale_Image_Image_Src(dst, dr, adr, src, sr, &o) + } + } else if _, ok := src.(*image.Uniform); ok { + Draw(dst, dr, src, src.Bounds().Min, op) + } else { + switch op { + case Over: + switch dst := dst.(type) { + case *image.RGBA: + switch src := src.(type) { + case *image.NRGBA: + z.scale_RGBA_NRGBA_Over(dst, dr, adr, src, sr, &o) + case *image.RGBA: + z.scale_RGBA_RGBA_Over(dst, dr, adr, src, sr, &o) + default: + z.scale_RGBA_Image_Over(dst, dr, adr, src, sr, &o) + } + default: + switch src := src.(type) { + default: + z.scale_Image_Image_Over(dst, dr, adr, src, sr, &o) + } + } + case Src: + switch dst := dst.(type) { + case *image.RGBA: + switch src := src.(type) { + case *image.Gray: + z.scale_RGBA_Gray_Src(dst, dr, adr, src, sr, &o) + case *image.NRGBA: + z.scale_RGBA_NRGBA_Src(dst, dr, adr, src, sr, &o) + case *image.RGBA: + z.scale_RGBA_RGBA_Src(dst, dr, adr, src, sr, &o) + case *image.YCbCr: + switch src.SubsampleRatio { + default: + z.scale_RGBA_Image_Src(dst, dr, adr, src, sr, &o) + case image.YCbCrSubsampleRatio444: + z.scale_RGBA_YCbCr444_Src(dst, dr, adr, src, sr, &o) + case image.YCbCrSubsampleRatio422: + z.scale_RGBA_YCbCr422_Src(dst, dr, adr, src, sr, &o) + case image.YCbCrSubsampleRatio420: + z.scale_RGBA_YCbCr420_Src(dst, dr, adr, src, sr, &o) + case image.YCbCrSubsampleRatio440: + z.scale_RGBA_YCbCr440_Src(dst, dr, adr, src, sr, &o) + } + default: + z.scale_RGBA_Image_Src(dst, dr, adr, src, sr, &o) + } + default: + switch src := src.(type) { + default: + z.scale_Image_Image_Src(dst, dr, adr, src, sr, &o) + } + } + } + } +} + +func (z ablInterpolator) Transform(dst Image, s2d f64.Aff3, src image.Image, sr image.Rectangle, op Op, opts *Options) { + // Try to simplify a Transform to a Copy. + if s2d[0] == 1 && s2d[1] == 0 && s2d[3] == 0 && s2d[4] == 1 { + dx := int(s2d[2]) + dy := int(s2d[5]) + if float64(dx) == s2d[2] && float64(dy) == s2d[5] { + Copy(dst, image.Point{X: sr.Min.X + dx, Y: sr.Min.X + dy}, src, sr, op, opts) + return + } + } + + var o Options + if opts != nil { + o = *opts + } + + dr := transformRect(&s2d, &sr) + // adr is the affected destination pixels. + adr := dst.Bounds().Intersect(dr) + adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP) + if adr.Empty() || sr.Empty() { + return + } + if op == Over && o.SrcMask == nil && opaque(src) { + op = Src + } + + d2s := invert(&s2d) + // bias is a translation of the mapping from dst coordinates to src + // coordinates such that the latter temporarily have non-negative X + // and Y coordinates. This allows us to write int(f) instead of + // int(math.Floor(f)), since "round to zero" and "round down" are + // equivalent when f >= 0, but the former is much cheaper. The X-- + // and Y-- are because the TransformLeaf methods have a "sx -= 0.5" + // adjustment. + bias := transformRect(&d2s, &adr).Min + bias.X-- + bias.Y-- + d2s[2] -= float64(bias.X) + d2s[5] -= float64(bias.Y) + // Make adr relative to dr.Min. + adr = adr.Sub(dr.Min) + // sr is the source pixels. If it extends beyond the src bounds, + // we cannot use the type-specific fast paths, as they access + // the Pix fields directly without bounds checking. + // + // Similarly, the fast paths assume that the masks are nil. + if o.DstMask != nil || o.SrcMask != nil || !sr.In(src.Bounds()) { + switch op { + case Over: + z.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias, &o) + case Src: + z.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o) + } + } else if u, ok := src.(*image.Uniform); ok { + transform_Uniform(dst, dr, adr, &d2s, u, sr, bias, op) + } else { + switch op { + case Over: + switch dst := dst.(type) { + case *image.RGBA: + switch src := src.(type) { + case *image.NRGBA: + z.transform_RGBA_NRGBA_Over(dst, dr, adr, &d2s, src, sr, bias, &o) + case *image.RGBA: + z.transform_RGBA_RGBA_Over(dst, dr, adr, &d2s, src, sr, bias, &o) + default: + z.transform_RGBA_Image_Over(dst, dr, adr, &d2s, src, sr, bias, &o) + } + default: + switch src := src.(type) { + default: + z.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias, &o) + } + } + case Src: + switch dst := dst.(type) { + case *image.RGBA: + switch src := src.(type) { + case *image.Gray: + z.transform_RGBA_Gray_Src(dst, dr, adr, &d2s, src, sr, bias, &o) + case *image.NRGBA: + z.transform_RGBA_NRGBA_Src(dst, dr, adr, &d2s, src, sr, bias, &o) + case *image.RGBA: + z.transform_RGBA_RGBA_Src(dst, dr, adr, &d2s, src, sr, bias, &o) + case *image.YCbCr: + switch src.SubsampleRatio { + default: + z.transform_RGBA_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o) + case image.YCbCrSubsampleRatio444: + z.transform_RGBA_YCbCr444_Src(dst, dr, adr, &d2s, src, sr, bias, &o) + case image.YCbCrSubsampleRatio422: + z.transform_RGBA_YCbCr422_Src(dst, dr, adr, &d2s, src, sr, bias, &o) + case image.YCbCrSubsampleRatio420: + z.transform_RGBA_YCbCr420_Src(dst, dr, adr, &d2s, src, sr, bias, &o) + case image.YCbCrSubsampleRatio440: + z.transform_RGBA_YCbCr440_Src(dst, dr, adr, &d2s, src, sr, bias, &o) + } + default: + z.transform_RGBA_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o) + } + default: + switch src := src.(type) { + default: + z.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o) + } + } + } + } +} + +func (ablInterpolator) scale_RGBA_Gray_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.Gray, sr image.Rectangle, opts *Options) { + sw := int32(sr.Dx()) + sh := int32(sr.Dy()) + yscale := float64(sh) / float64(dr.Dy()) + xscale := float64(sw) / float64(dr.Dx()) + swMinus1, shMinus1 := sw-1, sh-1 + + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + sy := (float64(dy)+0.5)*yscale - 0.5 + // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if + // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for + // sx, below. + sy0 := int32(sy) + yFrac0 := sy - float64(sy0) + yFrac1 := 1 - yFrac0 + sy1 := sy0 + 1 + if sy < 0 { + sy0, sy1 = 0, 0 + yFrac0, yFrac1 = 0, 1 + } else if sy1 > shMinus1 { + sy0, sy1 = shMinus1, shMinus1 + yFrac0, yFrac1 = 1, 0 + } + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + sx := (float64(dx)+0.5)*xscale - 0.5 + sx0 := int32(sx) + xFrac0 := sx - float64(sx0) + xFrac1 := 1 - xFrac0 + sx1 := sx0 + 1 + if sx < 0 { + sx0, sx1 = 0, 0 + xFrac0, xFrac1 = 0, 1 + } else if sx1 > swMinus1 { + sx0, sx1 = swMinus1, swMinus1 + xFrac0, xFrac1 = 1, 0 + } + + s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx0) - src.Rect.Min.X) + s00ru := uint32(src.Pix[s00i]) * 0x101 + s00r := float64(s00ru) + s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx1) - src.Rect.Min.X) + s10ru := uint32(src.Pix[s10i]) * 0x101 + s10r := float64(s10ru) + s10r = xFrac1*s00r + xFrac0*s10r + s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx0) - src.Rect.Min.X) + s01ru := uint32(src.Pix[s01i]) * 0x101 + s01r := float64(s01ru) + s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx1) - src.Rect.Min.X) + s11ru := uint32(src.Pix[s11i]) * 0x101 + s11r := float64(s11ru) + s11r = xFrac1*s01r + xFrac0*s11r + s11r = yFrac1*s10r + yFrac0*s11r + pr := uint32(s11r) + out := uint8(pr >> 8) + dst.Pix[d+0] = out + dst.Pix[d+1] = out + dst.Pix[d+2] = out + dst.Pix[d+3] = 0xff + } + } +} + +func (ablInterpolator) scale_RGBA_NRGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, src *image.NRGBA, sr image.Rectangle, opts *Options) { + sw := int32(sr.Dx()) + sh := int32(sr.Dy()) + yscale := float64(sh) / float64(dr.Dy()) + xscale := float64(sw) / float64(dr.Dx()) + swMinus1, shMinus1 := sw-1, sh-1 + + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + sy := (float64(dy)+0.5)*yscale - 0.5 + // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if + // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for + // sx, below. + sy0 := int32(sy) + yFrac0 := sy - float64(sy0) + yFrac1 := 1 - yFrac0 + sy1 := sy0 + 1 + if sy < 0 { + sy0, sy1 = 0, 0 + yFrac0, yFrac1 = 0, 1 + } else if sy1 > shMinus1 { + sy0, sy1 = shMinus1, shMinus1 + yFrac0, yFrac1 = 1, 0 + } + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + sx := (float64(dx)+0.5)*xscale - 0.5 + sx0 := int32(sx) + xFrac0 := sx - float64(sx0) + xFrac1 := 1 - xFrac0 + sx1 := sx0 + 1 + if sx < 0 { + sx0, sx1 = 0, 0 + xFrac0, xFrac1 = 0, 1 + } else if sx1 > swMinus1 { + sx0, sx1 = swMinus1, swMinus1 + xFrac0, xFrac1 = 1, 0 + } + + s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4 + s00au := uint32(src.Pix[s00i+3]) * 0x101 + s00ru := uint32(src.Pix[s00i+0]) * s00au / 0xff + s00gu := uint32(src.Pix[s00i+1]) * s00au / 0xff + s00bu := uint32(src.Pix[s00i+2]) * s00au / 0xff + s00r := float64(s00ru) + s00g := float64(s00gu) + s00b := float64(s00bu) + s00a := float64(s00au) + s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4 + s10au := uint32(src.Pix[s10i+3]) * 0x101 + s10ru := uint32(src.Pix[s10i+0]) * s10au / 0xff + s10gu := uint32(src.Pix[s10i+1]) * s10au / 0xff + s10bu := uint32(src.Pix[s10i+2]) * s10au / 0xff + s10r := float64(s10ru) + s10g := float64(s10gu) + s10b := float64(s10bu) + s10a := float64(s10au) + s10r = xFrac1*s00r + xFrac0*s10r + s10g = xFrac1*s00g + xFrac0*s10g + s10b = xFrac1*s00b + xFrac0*s10b + s10a = xFrac1*s00a + xFrac0*s10a + s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4 + s01au := uint32(src.Pix[s01i+3]) * 0x101 + s01ru := uint32(src.Pix[s01i+0]) * s01au / 0xff + s01gu := uint32(src.Pix[s01i+1]) * s01au / 0xff + s01bu := uint32(src.Pix[s01i+2]) * s01au / 0xff + s01r := float64(s01ru) + s01g := float64(s01gu) + s01b := float64(s01bu) + s01a := float64(s01au) + s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4 + s11au := uint32(src.Pix[s11i+3]) * 0x101 + s11ru := uint32(src.Pix[s11i+0]) * s11au / 0xff + s11gu := uint32(src.Pix[s11i+1]) * s11au / 0xff + s11bu := uint32(src.Pix[s11i+2]) * s11au / 0xff + s11r := float64(s11ru) + s11g := float64(s11gu) + s11b := float64(s11bu) + s11a := float64(s11au) + s11r = xFrac1*s01r + xFrac0*s11r + s11g = xFrac1*s01g + xFrac0*s11g + s11b = xFrac1*s01b + xFrac0*s11b + s11a = xFrac1*s01a + xFrac0*s11a + s11r = yFrac1*s10r + yFrac0*s11r + s11g = yFrac1*s10g + yFrac0*s11g + s11b = yFrac1*s10b + yFrac0*s11b + s11a = yFrac1*s10a + yFrac0*s11a + pr := uint32(s11r) + pg := uint32(s11g) + pb := uint32(s11b) + pa := uint32(s11a) + pa1 := (0xffff - pa) * 0x101 + dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8) + dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8) + dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8) + dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8) + } + } +} + +func (ablInterpolator) scale_RGBA_NRGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.NRGBA, sr image.Rectangle, opts *Options) { + sw := int32(sr.Dx()) + sh := int32(sr.Dy()) + yscale := float64(sh) / float64(dr.Dy()) + xscale := float64(sw) / float64(dr.Dx()) + swMinus1, shMinus1 := sw-1, sh-1 + + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + sy := (float64(dy)+0.5)*yscale - 0.5 + // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if + // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for + // sx, below. + sy0 := int32(sy) + yFrac0 := sy - float64(sy0) + yFrac1 := 1 - yFrac0 + sy1 := sy0 + 1 + if sy < 0 { + sy0, sy1 = 0, 0 + yFrac0, yFrac1 = 0, 1 + } else if sy1 > shMinus1 { + sy0, sy1 = shMinus1, shMinus1 + yFrac0, yFrac1 = 1, 0 + } + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + sx := (float64(dx)+0.5)*xscale - 0.5 + sx0 := int32(sx) + xFrac0 := sx - float64(sx0) + xFrac1 := 1 - xFrac0 + sx1 := sx0 + 1 + if sx < 0 { + sx0, sx1 = 0, 0 + xFrac0, xFrac1 = 0, 1 + } else if sx1 > swMinus1 { + sx0, sx1 = swMinus1, swMinus1 + xFrac0, xFrac1 = 1, 0 + } + + s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4 + s00au := uint32(src.Pix[s00i+3]) * 0x101 + s00ru := uint32(src.Pix[s00i+0]) * s00au / 0xff + s00gu := uint32(src.Pix[s00i+1]) * s00au / 0xff + s00bu := uint32(src.Pix[s00i+2]) * s00au / 0xff + s00r := float64(s00ru) + s00g := float64(s00gu) + s00b := float64(s00bu) + s00a := float64(s00au) + s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4 + s10au := uint32(src.Pix[s10i+3]) * 0x101 + s10ru := uint32(src.Pix[s10i+0]) * s10au / 0xff + s10gu := uint32(src.Pix[s10i+1]) * s10au / 0xff + s10bu := uint32(src.Pix[s10i+2]) * s10au / 0xff + s10r := float64(s10ru) + s10g := float64(s10gu) + s10b := float64(s10bu) + s10a := float64(s10au) + s10r = xFrac1*s00r + xFrac0*s10r + s10g = xFrac1*s00g + xFrac0*s10g + s10b = xFrac1*s00b + xFrac0*s10b + s10a = xFrac1*s00a + xFrac0*s10a + s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4 + s01au := uint32(src.Pix[s01i+3]) * 0x101 + s01ru := uint32(src.Pix[s01i+0]) * s01au / 0xff + s01gu := uint32(src.Pix[s01i+1]) * s01au / 0xff + s01bu := uint32(src.Pix[s01i+2]) * s01au / 0xff + s01r := float64(s01ru) + s01g := float64(s01gu) + s01b := float64(s01bu) + s01a := float64(s01au) + s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4 + s11au := uint32(src.Pix[s11i+3]) * 0x101 + s11ru := uint32(src.Pix[s11i+0]) * s11au / 0xff + s11gu := uint32(src.Pix[s11i+1]) * s11au / 0xff + s11bu := uint32(src.Pix[s11i+2]) * s11au / 0xff + s11r := float64(s11ru) + s11g := float64(s11gu) + s11b := float64(s11bu) + s11a := float64(s11au) + s11r = xFrac1*s01r + xFrac0*s11r + s11g = xFrac1*s01g + xFrac0*s11g + s11b = xFrac1*s01b + xFrac0*s11b + s11a = xFrac1*s01a + xFrac0*s11a + s11r = yFrac1*s10r + yFrac0*s11r + s11g = yFrac1*s10g + yFrac0*s11g + s11b = yFrac1*s10b + yFrac0*s11b + s11a = yFrac1*s10a + yFrac0*s11a + pr := uint32(s11r) + pg := uint32(s11g) + pb := uint32(s11b) + pa := uint32(s11a) + dst.Pix[d+0] = uint8(pr >> 8) + dst.Pix[d+1] = uint8(pg >> 8) + dst.Pix[d+2] = uint8(pb >> 8) + dst.Pix[d+3] = uint8(pa >> 8) + } + } +} + +func (ablInterpolator) scale_RGBA_RGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, src *image.RGBA, sr image.Rectangle, opts *Options) { + sw := int32(sr.Dx()) + sh := int32(sr.Dy()) + yscale := float64(sh) / float64(dr.Dy()) + xscale := float64(sw) / float64(dr.Dx()) + swMinus1, shMinus1 := sw-1, sh-1 + + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + sy := (float64(dy)+0.5)*yscale - 0.5 + // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if + // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for + // sx, below. + sy0 := int32(sy) + yFrac0 := sy - float64(sy0) + yFrac1 := 1 - yFrac0 + sy1 := sy0 + 1 + if sy < 0 { + sy0, sy1 = 0, 0 + yFrac0, yFrac1 = 0, 1 + } else if sy1 > shMinus1 { + sy0, sy1 = shMinus1, shMinus1 + yFrac0, yFrac1 = 1, 0 + } + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + sx := (float64(dx)+0.5)*xscale - 0.5 + sx0 := int32(sx) + xFrac0 := sx - float64(sx0) + xFrac1 := 1 - xFrac0 + sx1 := sx0 + 1 + if sx < 0 { + sx0, sx1 = 0, 0 + xFrac0, xFrac1 = 0, 1 + } else if sx1 > swMinus1 { + sx0, sx1 = swMinus1, swMinus1 + xFrac0, xFrac1 = 1, 0 + } + + s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4 + s00ru := uint32(src.Pix[s00i+0]) * 0x101 + s00gu := uint32(src.Pix[s00i+1]) * 0x101 + s00bu := uint32(src.Pix[s00i+2]) * 0x101 + s00au := uint32(src.Pix[s00i+3]) * 0x101 + s00r := float64(s00ru) + s00g := float64(s00gu) + s00b := float64(s00bu) + s00a := float64(s00au) + s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4 + s10ru := uint32(src.Pix[s10i+0]) * 0x101 + s10gu := uint32(src.Pix[s10i+1]) * 0x101 + s10bu := uint32(src.Pix[s10i+2]) * 0x101 + s10au := uint32(src.Pix[s10i+3]) * 0x101 + s10r := float64(s10ru) + s10g := float64(s10gu) + s10b := float64(s10bu) + s10a := float64(s10au) + s10r = xFrac1*s00r + xFrac0*s10r + s10g = xFrac1*s00g + xFrac0*s10g + s10b = xFrac1*s00b + xFrac0*s10b + s10a = xFrac1*s00a + xFrac0*s10a + s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4 + s01ru := uint32(src.Pix[s01i+0]) * 0x101 + s01gu := uint32(src.Pix[s01i+1]) * 0x101 + s01bu := uint32(src.Pix[s01i+2]) * 0x101 + s01au := uint32(src.Pix[s01i+3]) * 0x101 + s01r := float64(s01ru) + s01g := float64(s01gu) + s01b := float64(s01bu) + s01a := float64(s01au) + s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4 + s11ru := uint32(src.Pix[s11i+0]) * 0x101 + s11gu := uint32(src.Pix[s11i+1]) * 0x101 + s11bu := uint32(src.Pix[s11i+2]) * 0x101 + s11au := uint32(src.Pix[s11i+3]) * 0x101 + s11r := float64(s11ru) + s11g := float64(s11gu) + s11b := float64(s11bu) + s11a := float64(s11au) + s11r = xFrac1*s01r + xFrac0*s11r + s11g = xFrac1*s01g + xFrac0*s11g + s11b = xFrac1*s01b + xFrac0*s11b + s11a = xFrac1*s01a + xFrac0*s11a + s11r = yFrac1*s10r + yFrac0*s11r + s11g = yFrac1*s10g + yFrac0*s11g + s11b = yFrac1*s10b + yFrac0*s11b + s11a = yFrac1*s10a + yFrac0*s11a + pr := uint32(s11r) + pg := uint32(s11g) + pb := uint32(s11b) + pa := uint32(s11a) + pa1 := (0xffff - pa) * 0x101 + dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8) + dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8) + dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8) + dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8) + } + } +} + +func (ablInterpolator) scale_RGBA_RGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.RGBA, sr image.Rectangle, opts *Options) { + sw := int32(sr.Dx()) + sh := int32(sr.Dy()) + yscale := float64(sh) / float64(dr.Dy()) + xscale := float64(sw) / float64(dr.Dx()) + swMinus1, shMinus1 := sw-1, sh-1 + + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + sy := (float64(dy)+0.5)*yscale - 0.5 + // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if + // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for + // sx, below. + sy0 := int32(sy) + yFrac0 := sy - float64(sy0) + yFrac1 := 1 - yFrac0 + sy1 := sy0 + 1 + if sy < 0 { + sy0, sy1 = 0, 0 + yFrac0, yFrac1 = 0, 1 + } else if sy1 > shMinus1 { + sy0, sy1 = shMinus1, shMinus1 + yFrac0, yFrac1 = 1, 0 + } + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + sx := (float64(dx)+0.5)*xscale - 0.5 + sx0 := int32(sx) + xFrac0 := sx - float64(sx0) + xFrac1 := 1 - xFrac0 + sx1 := sx0 + 1 + if sx < 0 { + sx0, sx1 = 0, 0 + xFrac0, xFrac1 = 0, 1 + } else if sx1 > swMinus1 { + sx0, sx1 = swMinus1, swMinus1 + xFrac0, xFrac1 = 1, 0 + } + + s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4 + s00ru := uint32(src.Pix[s00i+0]) * 0x101 + s00gu := uint32(src.Pix[s00i+1]) * 0x101 + s00bu := uint32(src.Pix[s00i+2]) * 0x101 + s00au := uint32(src.Pix[s00i+3]) * 0x101 + s00r := float64(s00ru) + s00g := float64(s00gu) + s00b := float64(s00bu) + s00a := float64(s00au) + s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4 + s10ru := uint32(src.Pix[s10i+0]) * 0x101 + s10gu := uint32(src.Pix[s10i+1]) * 0x101 + s10bu := uint32(src.Pix[s10i+2]) * 0x101 + s10au := uint32(src.Pix[s10i+3]) * 0x101 + s10r := float64(s10ru) + s10g := float64(s10gu) + s10b := float64(s10bu) + s10a := float64(s10au) + s10r = xFrac1*s00r + xFrac0*s10r + s10g = xFrac1*s00g + xFrac0*s10g + s10b = xFrac1*s00b + xFrac0*s10b + s10a = xFrac1*s00a + xFrac0*s10a + s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4 + s01ru := uint32(src.Pix[s01i+0]) * 0x101 + s01gu := uint32(src.Pix[s01i+1]) * 0x101 + s01bu := uint32(src.Pix[s01i+2]) * 0x101 + s01au := uint32(src.Pix[s01i+3]) * 0x101 + s01r := float64(s01ru) + s01g := float64(s01gu) + s01b := float64(s01bu) + s01a := float64(s01au) + s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4 + s11ru := uint32(src.Pix[s11i+0]) * 0x101 + s11gu := uint32(src.Pix[s11i+1]) * 0x101 + s11bu := uint32(src.Pix[s11i+2]) * 0x101 + s11au := uint32(src.Pix[s11i+3]) * 0x101 + s11r := float64(s11ru) + s11g := float64(s11gu) + s11b := float64(s11bu) + s11a := float64(s11au) + s11r = xFrac1*s01r + xFrac0*s11r + s11g = xFrac1*s01g + xFrac0*s11g + s11b = xFrac1*s01b + xFrac0*s11b + s11a = xFrac1*s01a + xFrac0*s11a + s11r = yFrac1*s10r + yFrac0*s11r + s11g = yFrac1*s10g + yFrac0*s11g + s11b = yFrac1*s10b + yFrac0*s11b + s11a = yFrac1*s10a + yFrac0*s11a + pr := uint32(s11r) + pg := uint32(s11g) + pb := uint32(s11b) + pa := uint32(s11a) + dst.Pix[d+0] = uint8(pr >> 8) + dst.Pix[d+1] = uint8(pg >> 8) + dst.Pix[d+2] = uint8(pb >> 8) + dst.Pix[d+3] = uint8(pa >> 8) + } + } +} + +func (ablInterpolator) scale_RGBA_YCbCr444_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) { + sw := int32(sr.Dx()) + sh := int32(sr.Dy()) + yscale := float64(sh) / float64(dr.Dy()) + xscale := float64(sw) / float64(dr.Dx()) + swMinus1, shMinus1 := sw-1, sh-1 + + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + sy := (float64(dy)+0.5)*yscale - 0.5 + // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if + // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for + // sx, below. + sy0 := int32(sy) + yFrac0 := sy - float64(sy0) + yFrac1 := 1 - yFrac0 + sy1 := sy0 + 1 + if sy < 0 { + sy0, sy1 = 0, 0 + yFrac0, yFrac1 = 0, 1 + } else if sy1 > shMinus1 { + sy0, sy1 = shMinus1, shMinus1 + yFrac0, yFrac1 = 1, 0 + } + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + sx := (float64(dx)+0.5)*xscale - 0.5 + sx0 := int32(sx) + xFrac0 := sx - float64(sx0) + xFrac1 := 1 - xFrac0 + sx1 := sx0 + 1 + if sx < 0 { + sx0, sx1 = 0, 0 + xFrac0, xFrac1 = 0, 1 + } else if sx1 > swMinus1 { + sx0, sx1 = swMinus1, swMinus1 + xFrac0, xFrac1 = 1, 0 + } + + s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) + s00j := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s00yy1 := int(src.Y[s00i]) * 0x10101 + s00cb1 := int(src.Cb[s00j]) - 128 + s00cr1 := int(src.Cr[s00j]) - 128 + s00ru := (s00yy1 + 91881*s00cr1) >> 8 + s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8 + s00bu := (s00yy1 + 116130*s00cb1) >> 8 + if s00ru < 0 { + s00ru = 0 + } else if s00ru > 0xffff { + s00ru = 0xffff + } + if s00gu < 0 { + s00gu = 0 + } else if s00gu > 0xffff { + s00gu = 0xffff + } + if s00bu < 0 { + s00bu = 0 + } else if s00bu > 0xffff { + s00bu = 0xffff + } + + s00r := float64(s00ru) + s00g := float64(s00gu) + s00b := float64(s00bu) + s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) + s10j := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s10yy1 := int(src.Y[s10i]) * 0x10101 + s10cb1 := int(src.Cb[s10j]) - 128 + s10cr1 := int(src.Cr[s10j]) - 128 + s10ru := (s10yy1 + 91881*s10cr1) >> 8 + s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8 + s10bu := (s10yy1 + 116130*s10cb1) >> 8 + if s10ru < 0 { + s10ru = 0 + } else if s10ru > 0xffff { + s10ru = 0xffff + } + if s10gu < 0 { + s10gu = 0 + } else if s10gu > 0xffff { + s10gu = 0xffff + } + if s10bu < 0 { + s10bu = 0 + } else if s10bu > 0xffff { + s10bu = 0xffff + } + + s10r := float64(s10ru) + s10g := float64(s10gu) + s10b := float64(s10bu) + s10r = xFrac1*s00r + xFrac0*s10r + s10g = xFrac1*s00g + xFrac0*s10g + s10b = xFrac1*s00b + xFrac0*s10b + s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) + s01j := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s01yy1 := int(src.Y[s01i]) * 0x10101 + s01cb1 := int(src.Cb[s01j]) - 128 + s01cr1 := int(src.Cr[s01j]) - 128 + s01ru := (s01yy1 + 91881*s01cr1) >> 8 + s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8 + s01bu := (s01yy1 + 116130*s01cb1) >> 8 + if s01ru < 0 { + s01ru = 0 + } else if s01ru > 0xffff { + s01ru = 0xffff + } + if s01gu < 0 { + s01gu = 0 + } else if s01gu > 0xffff { + s01gu = 0xffff + } + if s01bu < 0 { + s01bu = 0 + } else if s01bu > 0xffff { + s01bu = 0xffff + } + + s01r := float64(s01ru) + s01g := float64(s01gu) + s01b := float64(s01bu) + s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) + s11j := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s11yy1 := int(src.Y[s11i]) * 0x10101 + s11cb1 := int(src.Cb[s11j]) - 128 + s11cr1 := int(src.Cr[s11j]) - 128 + s11ru := (s11yy1 + 91881*s11cr1) >> 8 + s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8 + s11bu := (s11yy1 + 116130*s11cb1) >> 8 + if s11ru < 0 { + s11ru = 0 + } else if s11ru > 0xffff { + s11ru = 0xffff + } + if s11gu < 0 { + s11gu = 0 + } else if s11gu > 0xffff { + s11gu = 0xffff + } + if s11bu < 0 { + s11bu = 0 + } else if s11bu > 0xffff { + s11bu = 0xffff + } + + s11r := float64(s11ru) + s11g := float64(s11gu) + s11b := float64(s11bu) + s11r = xFrac1*s01r + xFrac0*s11r + s11g = xFrac1*s01g + xFrac0*s11g + s11b = xFrac1*s01b + xFrac0*s11b + s11r = yFrac1*s10r + yFrac0*s11r + s11g = yFrac1*s10g + yFrac0*s11g + s11b = yFrac1*s10b + yFrac0*s11b + pr := uint32(s11r) + pg := uint32(s11g) + pb := uint32(s11b) + dst.Pix[d+0] = uint8(pr >> 8) + dst.Pix[d+1] = uint8(pg >> 8) + dst.Pix[d+2] = uint8(pb >> 8) + dst.Pix[d+3] = 0xff + } + } +} + +func (ablInterpolator) scale_RGBA_YCbCr422_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) { + sw := int32(sr.Dx()) + sh := int32(sr.Dy()) + yscale := float64(sh) / float64(dr.Dy()) + xscale := float64(sw) / float64(dr.Dx()) + swMinus1, shMinus1 := sw-1, sh-1 + + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + sy := (float64(dy)+0.5)*yscale - 0.5 + // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if + // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for + // sx, below. + sy0 := int32(sy) + yFrac0 := sy - float64(sy0) + yFrac1 := 1 - yFrac0 + sy1 := sy0 + 1 + if sy < 0 { + sy0, sy1 = 0, 0 + yFrac0, yFrac1 = 0, 1 + } else if sy1 > shMinus1 { + sy0, sy1 = shMinus1, shMinus1 + yFrac0, yFrac1 = 1, 0 + } + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + sx := (float64(dx)+0.5)*xscale - 0.5 + sx0 := int32(sx) + xFrac0 := sx - float64(sx0) + xFrac1 := 1 - xFrac0 + sx1 := sx0 + 1 + if sx < 0 { + sx0, sx1 = 0, 0 + xFrac0, xFrac1 = 0, 1 + } else if sx1 > swMinus1 { + sx0, sx1 = swMinus1, swMinus1 + xFrac0, xFrac1 = 1, 0 + } + + s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) + s00j := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx0))/2 - src.Rect.Min.X/2) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s00yy1 := int(src.Y[s00i]) * 0x10101 + s00cb1 := int(src.Cb[s00j]) - 128 + s00cr1 := int(src.Cr[s00j]) - 128 + s00ru := (s00yy1 + 91881*s00cr1) >> 8 + s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8 + s00bu := (s00yy1 + 116130*s00cb1) >> 8 + if s00ru < 0 { + s00ru = 0 + } else if s00ru > 0xffff { + s00ru = 0xffff + } + if s00gu < 0 { + s00gu = 0 + } else if s00gu > 0xffff { + s00gu = 0xffff + } + if s00bu < 0 { + s00bu = 0 + } else if s00bu > 0xffff { + s00bu = 0xffff + } + + s00r := float64(s00ru) + s00g := float64(s00gu) + s00b := float64(s00bu) + s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) + s10j := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx1))/2 - src.Rect.Min.X/2) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s10yy1 := int(src.Y[s10i]) * 0x10101 + s10cb1 := int(src.Cb[s10j]) - 128 + s10cr1 := int(src.Cr[s10j]) - 128 + s10ru := (s10yy1 + 91881*s10cr1) >> 8 + s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8 + s10bu := (s10yy1 + 116130*s10cb1) >> 8 + if s10ru < 0 { + s10ru = 0 + } else if s10ru > 0xffff { + s10ru = 0xffff + } + if s10gu < 0 { + s10gu = 0 + } else if s10gu > 0xffff { + s10gu = 0xffff + } + if s10bu < 0 { + s10bu = 0 + } else if s10bu > 0xffff { + s10bu = 0xffff + } + + s10r := float64(s10ru) + s10g := float64(s10gu) + s10b := float64(s10bu) + s10r = xFrac1*s00r + xFrac0*s10r + s10g = xFrac1*s00g + xFrac0*s10g + s10b = xFrac1*s00b + xFrac0*s10b + s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) + s01j := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx0))/2 - src.Rect.Min.X/2) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s01yy1 := int(src.Y[s01i]) * 0x10101 + s01cb1 := int(src.Cb[s01j]) - 128 + s01cr1 := int(src.Cr[s01j]) - 128 + s01ru := (s01yy1 + 91881*s01cr1) >> 8 + s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8 + s01bu := (s01yy1 + 116130*s01cb1) >> 8 + if s01ru < 0 { + s01ru = 0 + } else if s01ru > 0xffff { + s01ru = 0xffff + } + if s01gu < 0 { + s01gu = 0 + } else if s01gu > 0xffff { + s01gu = 0xffff + } + if s01bu < 0 { + s01bu = 0 + } else if s01bu > 0xffff { + s01bu = 0xffff + } + + s01r := float64(s01ru) + s01g := float64(s01gu) + s01b := float64(s01bu) + s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) + s11j := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx1))/2 - src.Rect.Min.X/2) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s11yy1 := int(src.Y[s11i]) * 0x10101 + s11cb1 := int(src.Cb[s11j]) - 128 + s11cr1 := int(src.Cr[s11j]) - 128 + s11ru := (s11yy1 + 91881*s11cr1) >> 8 + s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8 + s11bu := (s11yy1 + 116130*s11cb1) >> 8 + if s11ru < 0 { + s11ru = 0 + } else if s11ru > 0xffff { + s11ru = 0xffff + } + if s11gu < 0 { + s11gu = 0 + } else if s11gu > 0xffff { + s11gu = 0xffff + } + if s11bu < 0 { + s11bu = 0 + } else if s11bu > 0xffff { + s11bu = 0xffff + } + + s11r := float64(s11ru) + s11g := float64(s11gu) + s11b := float64(s11bu) + s11r = xFrac1*s01r + xFrac0*s11r + s11g = xFrac1*s01g + xFrac0*s11g + s11b = xFrac1*s01b + xFrac0*s11b + s11r = yFrac1*s10r + yFrac0*s11r + s11g = yFrac1*s10g + yFrac0*s11g + s11b = yFrac1*s10b + yFrac0*s11b + pr := uint32(s11r) + pg := uint32(s11g) + pb := uint32(s11b) + dst.Pix[d+0] = uint8(pr >> 8) + dst.Pix[d+1] = uint8(pg >> 8) + dst.Pix[d+2] = uint8(pb >> 8) + dst.Pix[d+3] = 0xff + } + } +} + +func (ablInterpolator) scale_RGBA_YCbCr420_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) { + sw := int32(sr.Dx()) + sh := int32(sr.Dy()) + yscale := float64(sh) / float64(dr.Dy()) + xscale := float64(sw) / float64(dr.Dx()) + swMinus1, shMinus1 := sw-1, sh-1 + + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + sy := (float64(dy)+0.5)*yscale - 0.5 + // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if + // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for + // sx, below. + sy0 := int32(sy) + yFrac0 := sy - float64(sy0) + yFrac1 := 1 - yFrac0 + sy1 := sy0 + 1 + if sy < 0 { + sy0, sy1 = 0, 0 + yFrac0, yFrac1 = 0, 1 + } else if sy1 > shMinus1 { + sy0, sy1 = shMinus1, shMinus1 + yFrac0, yFrac1 = 1, 0 + } + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + sx := (float64(dx)+0.5)*xscale - 0.5 + sx0 := int32(sx) + xFrac0 := sx - float64(sx0) + xFrac1 := 1 - xFrac0 + sx1 := sx0 + 1 + if sx < 0 { + sx0, sx1 = 0, 0 + xFrac0, xFrac1 = 0, 1 + } else if sx1 > swMinus1 { + sx0, sx1 = swMinus1, swMinus1 + xFrac0, xFrac1 = 1, 0 + } + + s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) + s00j := ((sr.Min.Y+int(sy0))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx0))/2 - src.Rect.Min.X/2) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s00yy1 := int(src.Y[s00i]) * 0x10101 + s00cb1 := int(src.Cb[s00j]) - 128 + s00cr1 := int(src.Cr[s00j]) - 128 + s00ru := (s00yy1 + 91881*s00cr1) >> 8 + s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8 + s00bu := (s00yy1 + 116130*s00cb1) >> 8 + if s00ru < 0 { + s00ru = 0 + } else if s00ru > 0xffff { + s00ru = 0xffff + } + if s00gu < 0 { + s00gu = 0 + } else if s00gu > 0xffff { + s00gu = 0xffff + } + if s00bu < 0 { + s00bu = 0 + } else if s00bu > 0xffff { + s00bu = 0xffff + } + + s00r := float64(s00ru) + s00g := float64(s00gu) + s00b := float64(s00bu) + s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) + s10j := ((sr.Min.Y+int(sy0))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx1))/2 - src.Rect.Min.X/2) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s10yy1 := int(src.Y[s10i]) * 0x10101 + s10cb1 := int(src.Cb[s10j]) - 128 + s10cr1 := int(src.Cr[s10j]) - 128 + s10ru := (s10yy1 + 91881*s10cr1) >> 8 + s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8 + s10bu := (s10yy1 + 116130*s10cb1) >> 8 + if s10ru < 0 { + s10ru = 0 + } else if s10ru > 0xffff { + s10ru = 0xffff + } + if s10gu < 0 { + s10gu = 0 + } else if s10gu > 0xffff { + s10gu = 0xffff + } + if s10bu < 0 { + s10bu = 0 + } else if s10bu > 0xffff { + s10bu = 0xffff + } + + s10r := float64(s10ru) + s10g := float64(s10gu) + s10b := float64(s10bu) + s10r = xFrac1*s00r + xFrac0*s10r + s10g = xFrac1*s00g + xFrac0*s10g + s10b = xFrac1*s00b + xFrac0*s10b + s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) + s01j := ((sr.Min.Y+int(sy1))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx0))/2 - src.Rect.Min.X/2) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s01yy1 := int(src.Y[s01i]) * 0x10101 + s01cb1 := int(src.Cb[s01j]) - 128 + s01cr1 := int(src.Cr[s01j]) - 128 + s01ru := (s01yy1 + 91881*s01cr1) >> 8 + s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8 + s01bu := (s01yy1 + 116130*s01cb1) >> 8 + if s01ru < 0 { + s01ru = 0 + } else if s01ru > 0xffff { + s01ru = 0xffff + } + if s01gu < 0 { + s01gu = 0 + } else if s01gu > 0xffff { + s01gu = 0xffff + } + if s01bu < 0 { + s01bu = 0 + } else if s01bu > 0xffff { + s01bu = 0xffff + } + + s01r := float64(s01ru) + s01g := float64(s01gu) + s01b := float64(s01bu) + s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) + s11j := ((sr.Min.Y+int(sy1))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx1))/2 - src.Rect.Min.X/2) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s11yy1 := int(src.Y[s11i]) * 0x10101 + s11cb1 := int(src.Cb[s11j]) - 128 + s11cr1 := int(src.Cr[s11j]) - 128 + s11ru := (s11yy1 + 91881*s11cr1) >> 8 + s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8 + s11bu := (s11yy1 + 116130*s11cb1) >> 8 + if s11ru < 0 { + s11ru = 0 + } else if s11ru > 0xffff { + s11ru = 0xffff + } + if s11gu < 0 { + s11gu = 0 + } else if s11gu > 0xffff { + s11gu = 0xffff + } + if s11bu < 0 { + s11bu = 0 + } else if s11bu > 0xffff { + s11bu = 0xffff + } + + s11r := float64(s11ru) + s11g := float64(s11gu) + s11b := float64(s11bu) + s11r = xFrac1*s01r + xFrac0*s11r + s11g = xFrac1*s01g + xFrac0*s11g + s11b = xFrac1*s01b + xFrac0*s11b + s11r = yFrac1*s10r + yFrac0*s11r + s11g = yFrac1*s10g + yFrac0*s11g + s11b = yFrac1*s10b + yFrac0*s11b + pr := uint32(s11r) + pg := uint32(s11g) + pb := uint32(s11b) + dst.Pix[d+0] = uint8(pr >> 8) + dst.Pix[d+1] = uint8(pg >> 8) + dst.Pix[d+2] = uint8(pb >> 8) + dst.Pix[d+3] = 0xff + } + } +} + +func (ablInterpolator) scale_RGBA_YCbCr440_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) { + sw := int32(sr.Dx()) + sh := int32(sr.Dy()) + yscale := float64(sh) / float64(dr.Dy()) + xscale := float64(sw) / float64(dr.Dx()) + swMinus1, shMinus1 := sw-1, sh-1 + + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + sy := (float64(dy)+0.5)*yscale - 0.5 + // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if + // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for + // sx, below. + sy0 := int32(sy) + yFrac0 := sy - float64(sy0) + yFrac1 := 1 - yFrac0 + sy1 := sy0 + 1 + if sy < 0 { + sy0, sy1 = 0, 0 + yFrac0, yFrac1 = 0, 1 + } else if sy1 > shMinus1 { + sy0, sy1 = shMinus1, shMinus1 + yFrac0, yFrac1 = 1, 0 + } + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + sx := (float64(dx)+0.5)*xscale - 0.5 + sx0 := int32(sx) + xFrac0 := sx - float64(sx0) + xFrac1 := 1 - xFrac0 + sx1 := sx0 + 1 + if sx < 0 { + sx0, sx1 = 0, 0 + xFrac0, xFrac1 = 0, 1 + } else if sx1 > swMinus1 { + sx0, sx1 = swMinus1, swMinus1 + xFrac0, xFrac1 = 1, 0 + } + + s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) + s00j := ((sr.Min.Y+int(sy0))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s00yy1 := int(src.Y[s00i]) * 0x10101 + s00cb1 := int(src.Cb[s00j]) - 128 + s00cr1 := int(src.Cr[s00j]) - 128 + s00ru := (s00yy1 + 91881*s00cr1) >> 8 + s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8 + s00bu := (s00yy1 + 116130*s00cb1) >> 8 + if s00ru < 0 { + s00ru = 0 + } else if s00ru > 0xffff { + s00ru = 0xffff + } + if s00gu < 0 { + s00gu = 0 + } else if s00gu > 0xffff { + s00gu = 0xffff + } + if s00bu < 0 { + s00bu = 0 + } else if s00bu > 0xffff { + s00bu = 0xffff + } + + s00r := float64(s00ru) + s00g := float64(s00gu) + s00b := float64(s00bu) + s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) + s10j := ((sr.Min.Y+int(sy0))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s10yy1 := int(src.Y[s10i]) * 0x10101 + s10cb1 := int(src.Cb[s10j]) - 128 + s10cr1 := int(src.Cr[s10j]) - 128 + s10ru := (s10yy1 + 91881*s10cr1) >> 8 + s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8 + s10bu := (s10yy1 + 116130*s10cb1) >> 8 + if s10ru < 0 { + s10ru = 0 + } else if s10ru > 0xffff { + s10ru = 0xffff + } + if s10gu < 0 { + s10gu = 0 + } else if s10gu > 0xffff { + s10gu = 0xffff + } + if s10bu < 0 { + s10bu = 0 + } else if s10bu > 0xffff { + s10bu = 0xffff + } + + s10r := float64(s10ru) + s10g := float64(s10gu) + s10b := float64(s10bu) + s10r = xFrac1*s00r + xFrac0*s10r + s10g = xFrac1*s00g + xFrac0*s10g + s10b = xFrac1*s00b + xFrac0*s10b + s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) + s01j := ((sr.Min.Y+int(sy1))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s01yy1 := int(src.Y[s01i]) * 0x10101 + s01cb1 := int(src.Cb[s01j]) - 128 + s01cr1 := int(src.Cr[s01j]) - 128 + s01ru := (s01yy1 + 91881*s01cr1) >> 8 + s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8 + s01bu := (s01yy1 + 116130*s01cb1) >> 8 + if s01ru < 0 { + s01ru = 0 + } else if s01ru > 0xffff { + s01ru = 0xffff + } + if s01gu < 0 { + s01gu = 0 + } else if s01gu > 0xffff { + s01gu = 0xffff + } + if s01bu < 0 { + s01bu = 0 + } else if s01bu > 0xffff { + s01bu = 0xffff + } + + s01r := float64(s01ru) + s01g := float64(s01gu) + s01b := float64(s01bu) + s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) + s11j := ((sr.Min.Y+int(sy1))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s11yy1 := int(src.Y[s11i]) * 0x10101 + s11cb1 := int(src.Cb[s11j]) - 128 + s11cr1 := int(src.Cr[s11j]) - 128 + s11ru := (s11yy1 + 91881*s11cr1) >> 8 + s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8 + s11bu := (s11yy1 + 116130*s11cb1) >> 8 + if s11ru < 0 { + s11ru = 0 + } else if s11ru > 0xffff { + s11ru = 0xffff + } + if s11gu < 0 { + s11gu = 0 + } else if s11gu > 0xffff { + s11gu = 0xffff + } + if s11bu < 0 { + s11bu = 0 + } else if s11bu > 0xffff { + s11bu = 0xffff + } + + s11r := float64(s11ru) + s11g := float64(s11gu) + s11b := float64(s11bu) + s11r = xFrac1*s01r + xFrac0*s11r + s11g = xFrac1*s01g + xFrac0*s11g + s11b = xFrac1*s01b + xFrac0*s11b + s11r = yFrac1*s10r + yFrac0*s11r + s11g = yFrac1*s10g + yFrac0*s11g + s11b = yFrac1*s10b + yFrac0*s11b + pr := uint32(s11r) + pg := uint32(s11g) + pb := uint32(s11b) + dst.Pix[d+0] = uint8(pr >> 8) + dst.Pix[d+1] = uint8(pg >> 8) + dst.Pix[d+2] = uint8(pb >> 8) + dst.Pix[d+3] = 0xff + } + } +} + +func (ablInterpolator) scale_RGBA_Image_Over(dst *image.RGBA, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) { + sw := int32(sr.Dx()) + sh := int32(sr.Dy()) + yscale := float64(sh) / float64(dr.Dy()) + xscale := float64(sw) / float64(dr.Dx()) + swMinus1, shMinus1 := sw-1, sh-1 + + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + sy := (float64(dy)+0.5)*yscale - 0.5 + // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if + // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for + // sx, below. + sy0 := int32(sy) + yFrac0 := sy - float64(sy0) + yFrac1 := 1 - yFrac0 + sy1 := sy0 + 1 + if sy < 0 { + sy0, sy1 = 0, 0 + yFrac0, yFrac1 = 0, 1 + } else if sy1 > shMinus1 { + sy0, sy1 = shMinus1, shMinus1 + yFrac0, yFrac1 = 1, 0 + } + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + sx := (float64(dx)+0.5)*xscale - 0.5 + sx0 := int32(sx) + xFrac0 := sx - float64(sx0) + xFrac1 := 1 - xFrac0 + sx1 := sx0 + 1 + if sx < 0 { + sx0, sx1 = 0, 0 + xFrac0, xFrac1 = 0, 1 + } else if sx1 > swMinus1 { + sx0, sx1 = swMinus1, swMinus1 + xFrac0, xFrac1 = 1, 0 + } + + s00ru, s00gu, s00bu, s00au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy0)).RGBA() + s00r := float64(s00ru) + s00g := float64(s00gu) + s00b := float64(s00bu) + s00a := float64(s00au) + s10ru, s10gu, s10bu, s10au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy0)).RGBA() + s10r := float64(s10ru) + s10g := float64(s10gu) + s10b := float64(s10bu) + s10a := float64(s10au) + s10r = xFrac1*s00r + xFrac0*s10r + s10g = xFrac1*s00g + xFrac0*s10g + s10b = xFrac1*s00b + xFrac0*s10b + s10a = xFrac1*s00a + xFrac0*s10a + s01ru, s01gu, s01bu, s01au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy1)).RGBA() + s01r := float64(s01ru) + s01g := float64(s01gu) + s01b := float64(s01bu) + s01a := float64(s01au) + s11ru, s11gu, s11bu, s11au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy1)).RGBA() + s11r := float64(s11ru) + s11g := float64(s11gu) + s11b := float64(s11bu) + s11a := float64(s11au) + s11r = xFrac1*s01r + xFrac0*s11r + s11g = xFrac1*s01g + xFrac0*s11g + s11b = xFrac1*s01b + xFrac0*s11b + s11a = xFrac1*s01a + xFrac0*s11a + s11r = yFrac1*s10r + yFrac0*s11r + s11g = yFrac1*s10g + yFrac0*s11g + s11b = yFrac1*s10b + yFrac0*s11b + s11a = yFrac1*s10a + yFrac0*s11a + pr := uint32(s11r) + pg := uint32(s11g) + pb := uint32(s11b) + pa := uint32(s11a) + pa1 := (0xffff - pa) * 0x101 + dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8) + dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8) + dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8) + dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8) + } + } +} + +func (ablInterpolator) scale_RGBA_Image_Src(dst *image.RGBA, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) { + sw := int32(sr.Dx()) + sh := int32(sr.Dy()) + yscale := float64(sh) / float64(dr.Dy()) + xscale := float64(sw) / float64(dr.Dx()) + swMinus1, shMinus1 := sw-1, sh-1 + + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + sy := (float64(dy)+0.5)*yscale - 0.5 + // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if + // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for + // sx, below. + sy0 := int32(sy) + yFrac0 := sy - float64(sy0) + yFrac1 := 1 - yFrac0 + sy1 := sy0 + 1 + if sy < 0 { + sy0, sy1 = 0, 0 + yFrac0, yFrac1 = 0, 1 + } else if sy1 > shMinus1 { + sy0, sy1 = shMinus1, shMinus1 + yFrac0, yFrac1 = 1, 0 + } + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + sx := (float64(dx)+0.5)*xscale - 0.5 + sx0 := int32(sx) + xFrac0 := sx - float64(sx0) + xFrac1 := 1 - xFrac0 + sx1 := sx0 + 1 + if sx < 0 { + sx0, sx1 = 0, 0 + xFrac0, xFrac1 = 0, 1 + } else if sx1 > swMinus1 { + sx0, sx1 = swMinus1, swMinus1 + xFrac0, xFrac1 = 1, 0 + } + + s00ru, s00gu, s00bu, s00au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy0)).RGBA() + s00r := float64(s00ru) + s00g := float64(s00gu) + s00b := float64(s00bu) + s00a := float64(s00au) + s10ru, s10gu, s10bu, s10au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy0)).RGBA() + s10r := float64(s10ru) + s10g := float64(s10gu) + s10b := float64(s10bu) + s10a := float64(s10au) + s10r = xFrac1*s00r + xFrac0*s10r + s10g = xFrac1*s00g + xFrac0*s10g + s10b = xFrac1*s00b + xFrac0*s10b + s10a = xFrac1*s00a + xFrac0*s10a + s01ru, s01gu, s01bu, s01au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy1)).RGBA() + s01r := float64(s01ru) + s01g := float64(s01gu) + s01b := float64(s01bu) + s01a := float64(s01au) + s11ru, s11gu, s11bu, s11au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy1)).RGBA() + s11r := float64(s11ru) + s11g := float64(s11gu) + s11b := float64(s11bu) + s11a := float64(s11au) + s11r = xFrac1*s01r + xFrac0*s11r + s11g = xFrac1*s01g + xFrac0*s11g + s11b = xFrac1*s01b + xFrac0*s11b + s11a = xFrac1*s01a + xFrac0*s11a + s11r = yFrac1*s10r + yFrac0*s11r + s11g = yFrac1*s10g + yFrac0*s11g + s11b = yFrac1*s10b + yFrac0*s11b + s11a = yFrac1*s10a + yFrac0*s11a + pr := uint32(s11r) + pg := uint32(s11g) + pb := uint32(s11b) + pa := uint32(s11a) + dst.Pix[d+0] = uint8(pr >> 8) + dst.Pix[d+1] = uint8(pg >> 8) + dst.Pix[d+2] = uint8(pb >> 8) + dst.Pix[d+3] = uint8(pa >> 8) + } + } +} + +func (ablInterpolator) scale_Image_Image_Over(dst Image, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) { + sw := int32(sr.Dx()) + sh := int32(sr.Dy()) + yscale := float64(sh) / float64(dr.Dy()) + xscale := float64(sw) / float64(dr.Dx()) + swMinus1, shMinus1 := sw-1, sh-1 + srcMask, smp := opts.SrcMask, opts.SrcMaskP + dstMask, dmp := opts.DstMask, opts.DstMaskP + dstColorRGBA64 := &color.RGBA64{} + dstColor := color.Color(dstColorRGBA64) + + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + sy := (float64(dy)+0.5)*yscale - 0.5 + // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if + // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for + // sx, below. + sy0 := int32(sy) + yFrac0 := sy - float64(sy0) + yFrac1 := 1 - yFrac0 + sy1 := sy0 + 1 + if sy < 0 { + sy0, sy1 = 0, 0 + yFrac0, yFrac1 = 0, 1 + } else if sy1 > shMinus1 { + sy0, sy1 = shMinus1, shMinus1 + yFrac0, yFrac1 = 1, 0 + } + + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { + sx := (float64(dx)+0.5)*xscale - 0.5 + sx0 := int32(sx) + xFrac0 := sx - float64(sx0) + xFrac1 := 1 - xFrac0 + sx1 := sx0 + 1 + if sx < 0 { + sx0, sx1 = 0, 0 + xFrac0, xFrac1 = 0, 1 + } else if sx1 > swMinus1 { + sx0, sx1 = swMinus1, swMinus1 + xFrac0, xFrac1 = 1, 0 + } + + s00ru, s00gu, s00bu, s00au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy0)).RGBA() + if srcMask != nil { + _, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx0), smp.Y+sr.Min.Y+int(sy0)).RGBA() + s00ru = s00ru * ma / 0xffff + s00gu = s00gu * ma / 0xffff + s00bu = s00bu * ma / 0xffff + s00au = s00au * ma / 0xffff + } + s00r := float64(s00ru) + s00g := float64(s00gu) + s00b := float64(s00bu) + s00a := float64(s00au) + s10ru, s10gu, s10bu, s10au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy0)).RGBA() + if srcMask != nil { + _, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx1), smp.Y+sr.Min.Y+int(sy0)).RGBA() + s10ru = s10ru * ma / 0xffff + s10gu = s10gu * ma / 0xffff + s10bu = s10bu * ma / 0xffff + s10au = s10au * ma / 0xffff + } + s10r := float64(s10ru) + s10g := float64(s10gu) + s10b := float64(s10bu) + s10a := float64(s10au) + s10r = xFrac1*s00r + xFrac0*s10r + s10g = xFrac1*s00g + xFrac0*s10g + s10b = xFrac1*s00b + xFrac0*s10b + s10a = xFrac1*s00a + xFrac0*s10a + s01ru, s01gu, s01bu, s01au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy1)).RGBA() + if srcMask != nil { + _, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx0), smp.Y+sr.Min.Y+int(sy1)).RGBA() + s01ru = s01ru * ma / 0xffff + s01gu = s01gu * ma / 0xffff + s01bu = s01bu * ma / 0xffff + s01au = s01au * ma / 0xffff + } + s01r := float64(s01ru) + s01g := float64(s01gu) + s01b := float64(s01bu) + s01a := float64(s01au) + s11ru, s11gu, s11bu, s11au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy1)).RGBA() + if srcMask != nil { + _, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx1), smp.Y+sr.Min.Y+int(sy1)).RGBA() + s11ru = s11ru * ma / 0xffff + s11gu = s11gu * ma / 0xffff + s11bu = s11bu * ma / 0xffff + s11au = s11au * ma / 0xffff + } + s11r := float64(s11ru) + s11g := float64(s11gu) + s11b := float64(s11bu) + s11a := float64(s11au) + s11r = xFrac1*s01r + xFrac0*s11r + s11g = xFrac1*s01g + xFrac0*s11g + s11b = xFrac1*s01b + xFrac0*s11b + s11a = xFrac1*s01a + xFrac0*s11a + s11r = yFrac1*s10r + yFrac0*s11r + s11g = yFrac1*s10g + yFrac0*s11g + s11b = yFrac1*s10b + yFrac0*s11b + s11a = yFrac1*s10a + yFrac0*s11a + pr := uint32(s11r) + pg := uint32(s11g) + pb := uint32(s11b) + pa := uint32(s11a) + qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA() + if dstMask != nil { + _, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA() + pr = pr * ma / 0xffff + pg = pg * ma / 0xffff + pb = pb * ma / 0xffff + pa = pa * ma / 0xffff + } + pa1 := 0xffff - pa + dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr) + dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg) + dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb) + dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa) + dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor) + } + } +} + +func (ablInterpolator) scale_Image_Image_Src(dst Image, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) { + sw := int32(sr.Dx()) + sh := int32(sr.Dy()) + yscale := float64(sh) / float64(dr.Dy()) + xscale := float64(sw) / float64(dr.Dx()) + swMinus1, shMinus1 := sw-1, sh-1 + srcMask, smp := opts.SrcMask, opts.SrcMaskP + dstMask, dmp := opts.DstMask, opts.DstMaskP + dstColorRGBA64 := &color.RGBA64{} + dstColor := color.Color(dstColorRGBA64) + + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + sy := (float64(dy)+0.5)*yscale - 0.5 + // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if + // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for + // sx, below. + sy0 := int32(sy) + yFrac0 := sy - float64(sy0) + yFrac1 := 1 - yFrac0 + sy1 := sy0 + 1 + if sy < 0 { + sy0, sy1 = 0, 0 + yFrac0, yFrac1 = 0, 1 + } else if sy1 > shMinus1 { + sy0, sy1 = shMinus1, shMinus1 + yFrac0, yFrac1 = 1, 0 + } + + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { + sx := (float64(dx)+0.5)*xscale - 0.5 + sx0 := int32(sx) + xFrac0 := sx - float64(sx0) + xFrac1 := 1 - xFrac0 + sx1 := sx0 + 1 + if sx < 0 { + sx0, sx1 = 0, 0 + xFrac0, xFrac1 = 0, 1 + } else if sx1 > swMinus1 { + sx0, sx1 = swMinus1, swMinus1 + xFrac0, xFrac1 = 1, 0 + } + + s00ru, s00gu, s00bu, s00au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy0)).RGBA() + if srcMask != nil { + _, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx0), smp.Y+sr.Min.Y+int(sy0)).RGBA() + s00ru = s00ru * ma / 0xffff + s00gu = s00gu * ma / 0xffff + s00bu = s00bu * ma / 0xffff + s00au = s00au * ma / 0xffff + } + s00r := float64(s00ru) + s00g := float64(s00gu) + s00b := float64(s00bu) + s00a := float64(s00au) + s10ru, s10gu, s10bu, s10au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy0)).RGBA() + if srcMask != nil { + _, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx1), smp.Y+sr.Min.Y+int(sy0)).RGBA() + s10ru = s10ru * ma / 0xffff + s10gu = s10gu * ma / 0xffff + s10bu = s10bu * ma / 0xffff + s10au = s10au * ma / 0xffff + } + s10r := float64(s10ru) + s10g := float64(s10gu) + s10b := float64(s10bu) + s10a := float64(s10au) + s10r = xFrac1*s00r + xFrac0*s10r + s10g = xFrac1*s00g + xFrac0*s10g + s10b = xFrac1*s00b + xFrac0*s10b + s10a = xFrac1*s00a + xFrac0*s10a + s01ru, s01gu, s01bu, s01au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy1)).RGBA() + if srcMask != nil { + _, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx0), smp.Y+sr.Min.Y+int(sy1)).RGBA() + s01ru = s01ru * ma / 0xffff + s01gu = s01gu * ma / 0xffff + s01bu = s01bu * ma / 0xffff + s01au = s01au * ma / 0xffff + } + s01r := float64(s01ru) + s01g := float64(s01gu) + s01b := float64(s01bu) + s01a := float64(s01au) + s11ru, s11gu, s11bu, s11au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy1)).RGBA() + if srcMask != nil { + _, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx1), smp.Y+sr.Min.Y+int(sy1)).RGBA() + s11ru = s11ru * ma / 0xffff + s11gu = s11gu * ma / 0xffff + s11bu = s11bu * ma / 0xffff + s11au = s11au * ma / 0xffff + } + s11r := float64(s11ru) + s11g := float64(s11gu) + s11b := float64(s11bu) + s11a := float64(s11au) + s11r = xFrac1*s01r + xFrac0*s11r + s11g = xFrac1*s01g + xFrac0*s11g + s11b = xFrac1*s01b + xFrac0*s11b + s11a = xFrac1*s01a + xFrac0*s11a + s11r = yFrac1*s10r + yFrac0*s11r + s11g = yFrac1*s10g + yFrac0*s11g + s11b = yFrac1*s10b + yFrac0*s11b + s11a = yFrac1*s10a + yFrac0*s11a + pr := uint32(s11r) + pg := uint32(s11g) + pb := uint32(s11b) + pa := uint32(s11a) + if dstMask != nil { + qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA() + _, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA() + pr = pr * ma / 0xffff + pg = pg * ma / 0xffff + pb = pb * ma / 0xffff + pa = pa * ma / 0xffff + pa1 := 0xffff - ma + dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr) + dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg) + dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb) + dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa) + dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor) + } else { + dstColorRGBA64.R = uint16(pr) + dstColorRGBA64.G = uint16(pg) + dstColorRGBA64.B = uint16(pb) + dstColorRGBA64.A = uint16(pa) + dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor) + } + } + } +} + +func (ablInterpolator) transform_RGBA_Gray_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.Gray, sr image.Rectangle, bias image.Point, opts *Options) { + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] + sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] + if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { + continue + } + + sx -= 0.5 + sx0 := int(sx) + xFrac0 := sx - float64(sx0) + xFrac1 := 1 - xFrac0 + sx0 += bias.X + sx1 := sx0 + 1 + if sx0 < sr.Min.X { + sx0, sx1 = sr.Min.X, sr.Min.X + xFrac0, xFrac1 = 0, 1 + } else if sx1 >= sr.Max.X { + sx0, sx1 = sr.Max.X-1, sr.Max.X-1 + xFrac0, xFrac1 = 1, 0 + } + + sy -= 0.5 + sy0 := int(sy) + yFrac0 := sy - float64(sy0) + yFrac1 := 1 - yFrac0 + sy0 += bias.Y + sy1 := sy0 + 1 + if sy0 < sr.Min.Y { + sy0, sy1 = sr.Min.Y, sr.Min.Y + yFrac0, yFrac1 = 0, 1 + } else if sy1 >= sr.Max.Y { + sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 + yFrac0, yFrac1 = 1, 0 + } + + s00i := (sy0-src.Rect.Min.Y)*src.Stride + (sx0 - src.Rect.Min.X) + s00ru := uint32(src.Pix[s00i]) * 0x101 + s00r := float64(s00ru) + s10i := (sy0-src.Rect.Min.Y)*src.Stride + (sx1 - src.Rect.Min.X) + s10ru := uint32(src.Pix[s10i]) * 0x101 + s10r := float64(s10ru) + s10r = xFrac1*s00r + xFrac0*s10r + s01i := (sy1-src.Rect.Min.Y)*src.Stride + (sx0 - src.Rect.Min.X) + s01ru := uint32(src.Pix[s01i]) * 0x101 + s01r := float64(s01ru) + s11i := (sy1-src.Rect.Min.Y)*src.Stride + (sx1 - src.Rect.Min.X) + s11ru := uint32(src.Pix[s11i]) * 0x101 + s11r := float64(s11ru) + s11r = xFrac1*s01r + xFrac0*s11r + s11r = yFrac1*s10r + yFrac0*s11r + pr := uint32(s11r) + out := uint8(pr >> 8) + dst.Pix[d+0] = out + dst.Pix[d+1] = out + dst.Pix[d+2] = out + dst.Pix[d+3] = 0xff + } + } +} + +func (ablInterpolator) transform_RGBA_NRGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point, opts *Options) { + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] + sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] + if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { + continue + } + + sx -= 0.5 + sx0 := int(sx) + xFrac0 := sx - float64(sx0) + xFrac1 := 1 - xFrac0 + sx0 += bias.X + sx1 := sx0 + 1 + if sx0 < sr.Min.X { + sx0, sx1 = sr.Min.X, sr.Min.X + xFrac0, xFrac1 = 0, 1 + } else if sx1 >= sr.Max.X { + sx0, sx1 = sr.Max.X-1, sr.Max.X-1 + xFrac0, xFrac1 = 1, 0 + } + + sy -= 0.5 + sy0 := int(sy) + yFrac0 := sy - float64(sy0) + yFrac1 := 1 - yFrac0 + sy0 += bias.Y + sy1 := sy0 + 1 + if sy0 < sr.Min.Y { + sy0, sy1 = sr.Min.Y, sr.Min.Y + yFrac0, yFrac1 = 0, 1 + } else if sy1 >= sr.Max.Y { + sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 + yFrac0, yFrac1 = 1, 0 + } + + s00i := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4 + s00au := uint32(src.Pix[s00i+3]) * 0x101 + s00ru := uint32(src.Pix[s00i+0]) * s00au / 0xff + s00gu := uint32(src.Pix[s00i+1]) * s00au / 0xff + s00bu := uint32(src.Pix[s00i+2]) * s00au / 0xff + s00r := float64(s00ru) + s00g := float64(s00gu) + s00b := float64(s00bu) + s00a := float64(s00au) + s10i := (sy0-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4 + s10au := uint32(src.Pix[s10i+3]) * 0x101 + s10ru := uint32(src.Pix[s10i+0]) * s10au / 0xff + s10gu := uint32(src.Pix[s10i+1]) * s10au / 0xff + s10bu := uint32(src.Pix[s10i+2]) * s10au / 0xff + s10r := float64(s10ru) + s10g := float64(s10gu) + s10b := float64(s10bu) + s10a := float64(s10au) + s10r = xFrac1*s00r + xFrac0*s10r + s10g = xFrac1*s00g + xFrac0*s10g + s10b = xFrac1*s00b + xFrac0*s10b + s10a = xFrac1*s00a + xFrac0*s10a + s01i := (sy1-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4 + s01au := uint32(src.Pix[s01i+3]) * 0x101 + s01ru := uint32(src.Pix[s01i+0]) * s01au / 0xff + s01gu := uint32(src.Pix[s01i+1]) * s01au / 0xff + s01bu := uint32(src.Pix[s01i+2]) * s01au / 0xff + s01r := float64(s01ru) + s01g := float64(s01gu) + s01b := float64(s01bu) + s01a := float64(s01au) + s11i := (sy1-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4 + s11au := uint32(src.Pix[s11i+3]) * 0x101 + s11ru := uint32(src.Pix[s11i+0]) * s11au / 0xff + s11gu := uint32(src.Pix[s11i+1]) * s11au / 0xff + s11bu := uint32(src.Pix[s11i+2]) * s11au / 0xff + s11r := float64(s11ru) + s11g := float64(s11gu) + s11b := float64(s11bu) + s11a := float64(s11au) + s11r = xFrac1*s01r + xFrac0*s11r + s11g = xFrac1*s01g + xFrac0*s11g + s11b = xFrac1*s01b + xFrac0*s11b + s11a = xFrac1*s01a + xFrac0*s11a + s11r = yFrac1*s10r + yFrac0*s11r + s11g = yFrac1*s10g + yFrac0*s11g + s11b = yFrac1*s10b + yFrac0*s11b + s11a = yFrac1*s10a + yFrac0*s11a + pr := uint32(s11r) + pg := uint32(s11g) + pb := uint32(s11b) + pa := uint32(s11a) + pa1 := (0xffff - pa) * 0x101 + dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8) + dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8) + dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8) + dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8) + } + } +} + +func (ablInterpolator) transform_RGBA_NRGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point, opts *Options) { + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] + sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] + if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { + continue + } + + sx -= 0.5 + sx0 := int(sx) + xFrac0 := sx - float64(sx0) + xFrac1 := 1 - xFrac0 + sx0 += bias.X + sx1 := sx0 + 1 + if sx0 < sr.Min.X { + sx0, sx1 = sr.Min.X, sr.Min.X + xFrac0, xFrac1 = 0, 1 + } else if sx1 >= sr.Max.X { + sx0, sx1 = sr.Max.X-1, sr.Max.X-1 + xFrac0, xFrac1 = 1, 0 + } + + sy -= 0.5 + sy0 := int(sy) + yFrac0 := sy - float64(sy0) + yFrac1 := 1 - yFrac0 + sy0 += bias.Y + sy1 := sy0 + 1 + if sy0 < sr.Min.Y { + sy0, sy1 = sr.Min.Y, sr.Min.Y + yFrac0, yFrac1 = 0, 1 + } else if sy1 >= sr.Max.Y { + sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 + yFrac0, yFrac1 = 1, 0 + } + + s00i := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4 + s00au := uint32(src.Pix[s00i+3]) * 0x101 + s00ru := uint32(src.Pix[s00i+0]) * s00au / 0xff + s00gu := uint32(src.Pix[s00i+1]) * s00au / 0xff + s00bu := uint32(src.Pix[s00i+2]) * s00au / 0xff + s00r := float64(s00ru) + s00g := float64(s00gu) + s00b := float64(s00bu) + s00a := float64(s00au) + s10i := (sy0-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4 + s10au := uint32(src.Pix[s10i+3]) * 0x101 + s10ru := uint32(src.Pix[s10i+0]) * s10au / 0xff + s10gu := uint32(src.Pix[s10i+1]) * s10au / 0xff + s10bu := uint32(src.Pix[s10i+2]) * s10au / 0xff + s10r := float64(s10ru) + s10g := float64(s10gu) + s10b := float64(s10bu) + s10a := float64(s10au) + s10r = xFrac1*s00r + xFrac0*s10r + s10g = xFrac1*s00g + xFrac0*s10g + s10b = xFrac1*s00b + xFrac0*s10b + s10a = xFrac1*s00a + xFrac0*s10a + s01i := (sy1-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4 + s01au := uint32(src.Pix[s01i+3]) * 0x101 + s01ru := uint32(src.Pix[s01i+0]) * s01au / 0xff + s01gu := uint32(src.Pix[s01i+1]) * s01au / 0xff + s01bu := uint32(src.Pix[s01i+2]) * s01au / 0xff + s01r := float64(s01ru) + s01g := float64(s01gu) + s01b := float64(s01bu) + s01a := float64(s01au) + s11i := (sy1-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4 + s11au := uint32(src.Pix[s11i+3]) * 0x101 + s11ru := uint32(src.Pix[s11i+0]) * s11au / 0xff + s11gu := uint32(src.Pix[s11i+1]) * s11au / 0xff + s11bu := uint32(src.Pix[s11i+2]) * s11au / 0xff + s11r := float64(s11ru) + s11g := float64(s11gu) + s11b := float64(s11bu) + s11a := float64(s11au) + s11r = xFrac1*s01r + xFrac0*s11r + s11g = xFrac1*s01g + xFrac0*s11g + s11b = xFrac1*s01b + xFrac0*s11b + s11a = xFrac1*s01a + xFrac0*s11a + s11r = yFrac1*s10r + yFrac0*s11r + s11g = yFrac1*s10g + yFrac0*s11g + s11b = yFrac1*s10b + yFrac0*s11b + s11a = yFrac1*s10a + yFrac0*s11a + pr := uint32(s11r) + pg := uint32(s11g) + pb := uint32(s11b) + pa := uint32(s11a) + dst.Pix[d+0] = uint8(pr >> 8) + dst.Pix[d+1] = uint8(pg >> 8) + dst.Pix[d+2] = uint8(pb >> 8) + dst.Pix[d+3] = uint8(pa >> 8) + } + } +} + +func (ablInterpolator) transform_RGBA_RGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point, opts *Options) { + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] + sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] + if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { + continue + } + + sx -= 0.5 + sx0 := int(sx) + xFrac0 := sx - float64(sx0) + xFrac1 := 1 - xFrac0 + sx0 += bias.X + sx1 := sx0 + 1 + if sx0 < sr.Min.X { + sx0, sx1 = sr.Min.X, sr.Min.X + xFrac0, xFrac1 = 0, 1 + } else if sx1 >= sr.Max.X { + sx0, sx1 = sr.Max.X-1, sr.Max.X-1 + xFrac0, xFrac1 = 1, 0 + } + + sy -= 0.5 + sy0 := int(sy) + yFrac0 := sy - float64(sy0) + yFrac1 := 1 - yFrac0 + sy0 += bias.Y + sy1 := sy0 + 1 + if sy0 < sr.Min.Y { + sy0, sy1 = sr.Min.Y, sr.Min.Y + yFrac0, yFrac1 = 0, 1 + } else if sy1 >= sr.Max.Y { + sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 + yFrac0, yFrac1 = 1, 0 + } + + s00i := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4 + s00ru := uint32(src.Pix[s00i+0]) * 0x101 + s00gu := uint32(src.Pix[s00i+1]) * 0x101 + s00bu := uint32(src.Pix[s00i+2]) * 0x101 + s00au := uint32(src.Pix[s00i+3]) * 0x101 + s00r := float64(s00ru) + s00g := float64(s00gu) + s00b := float64(s00bu) + s00a := float64(s00au) + s10i := (sy0-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4 + s10ru := uint32(src.Pix[s10i+0]) * 0x101 + s10gu := uint32(src.Pix[s10i+1]) * 0x101 + s10bu := uint32(src.Pix[s10i+2]) * 0x101 + s10au := uint32(src.Pix[s10i+3]) * 0x101 + s10r := float64(s10ru) + s10g := float64(s10gu) + s10b := float64(s10bu) + s10a := float64(s10au) + s10r = xFrac1*s00r + xFrac0*s10r + s10g = xFrac1*s00g + xFrac0*s10g + s10b = xFrac1*s00b + xFrac0*s10b + s10a = xFrac1*s00a + xFrac0*s10a + s01i := (sy1-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4 + s01ru := uint32(src.Pix[s01i+0]) * 0x101 + s01gu := uint32(src.Pix[s01i+1]) * 0x101 + s01bu := uint32(src.Pix[s01i+2]) * 0x101 + s01au := uint32(src.Pix[s01i+3]) * 0x101 + s01r := float64(s01ru) + s01g := float64(s01gu) + s01b := float64(s01bu) + s01a := float64(s01au) + s11i := (sy1-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4 + s11ru := uint32(src.Pix[s11i+0]) * 0x101 + s11gu := uint32(src.Pix[s11i+1]) * 0x101 + s11bu := uint32(src.Pix[s11i+2]) * 0x101 + s11au := uint32(src.Pix[s11i+3]) * 0x101 + s11r := float64(s11ru) + s11g := float64(s11gu) + s11b := float64(s11bu) + s11a := float64(s11au) + s11r = xFrac1*s01r + xFrac0*s11r + s11g = xFrac1*s01g + xFrac0*s11g + s11b = xFrac1*s01b + xFrac0*s11b + s11a = xFrac1*s01a + xFrac0*s11a + s11r = yFrac1*s10r + yFrac0*s11r + s11g = yFrac1*s10g + yFrac0*s11g + s11b = yFrac1*s10b + yFrac0*s11b + s11a = yFrac1*s10a + yFrac0*s11a + pr := uint32(s11r) + pg := uint32(s11g) + pb := uint32(s11b) + pa := uint32(s11a) + pa1 := (0xffff - pa) * 0x101 + dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8) + dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8) + dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8) + dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8) + } + } +} + +func (ablInterpolator) transform_RGBA_RGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point, opts *Options) { + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] + sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] + if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { + continue + } + + sx -= 0.5 + sx0 := int(sx) + xFrac0 := sx - float64(sx0) + xFrac1 := 1 - xFrac0 + sx0 += bias.X + sx1 := sx0 + 1 + if sx0 < sr.Min.X { + sx0, sx1 = sr.Min.X, sr.Min.X + xFrac0, xFrac1 = 0, 1 + } else if sx1 >= sr.Max.X { + sx0, sx1 = sr.Max.X-1, sr.Max.X-1 + xFrac0, xFrac1 = 1, 0 + } + + sy -= 0.5 + sy0 := int(sy) + yFrac0 := sy - float64(sy0) + yFrac1 := 1 - yFrac0 + sy0 += bias.Y + sy1 := sy0 + 1 + if sy0 < sr.Min.Y { + sy0, sy1 = sr.Min.Y, sr.Min.Y + yFrac0, yFrac1 = 0, 1 + } else if sy1 >= sr.Max.Y { + sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 + yFrac0, yFrac1 = 1, 0 + } + + s00i := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4 + s00ru := uint32(src.Pix[s00i+0]) * 0x101 + s00gu := uint32(src.Pix[s00i+1]) * 0x101 + s00bu := uint32(src.Pix[s00i+2]) * 0x101 + s00au := uint32(src.Pix[s00i+3]) * 0x101 + s00r := float64(s00ru) + s00g := float64(s00gu) + s00b := float64(s00bu) + s00a := float64(s00au) + s10i := (sy0-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4 + s10ru := uint32(src.Pix[s10i+0]) * 0x101 + s10gu := uint32(src.Pix[s10i+1]) * 0x101 + s10bu := uint32(src.Pix[s10i+2]) * 0x101 + s10au := uint32(src.Pix[s10i+3]) * 0x101 + s10r := float64(s10ru) + s10g := float64(s10gu) + s10b := float64(s10bu) + s10a := float64(s10au) + s10r = xFrac1*s00r + xFrac0*s10r + s10g = xFrac1*s00g + xFrac0*s10g + s10b = xFrac1*s00b + xFrac0*s10b + s10a = xFrac1*s00a + xFrac0*s10a + s01i := (sy1-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4 + s01ru := uint32(src.Pix[s01i+0]) * 0x101 + s01gu := uint32(src.Pix[s01i+1]) * 0x101 + s01bu := uint32(src.Pix[s01i+2]) * 0x101 + s01au := uint32(src.Pix[s01i+3]) * 0x101 + s01r := float64(s01ru) + s01g := float64(s01gu) + s01b := float64(s01bu) + s01a := float64(s01au) + s11i := (sy1-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4 + s11ru := uint32(src.Pix[s11i+0]) * 0x101 + s11gu := uint32(src.Pix[s11i+1]) * 0x101 + s11bu := uint32(src.Pix[s11i+2]) * 0x101 + s11au := uint32(src.Pix[s11i+3]) * 0x101 + s11r := float64(s11ru) + s11g := float64(s11gu) + s11b := float64(s11bu) + s11a := float64(s11au) + s11r = xFrac1*s01r + xFrac0*s11r + s11g = xFrac1*s01g + xFrac0*s11g + s11b = xFrac1*s01b + xFrac0*s11b + s11a = xFrac1*s01a + xFrac0*s11a + s11r = yFrac1*s10r + yFrac0*s11r + s11g = yFrac1*s10g + yFrac0*s11g + s11b = yFrac1*s10b + yFrac0*s11b + s11a = yFrac1*s10a + yFrac0*s11a + pr := uint32(s11r) + pg := uint32(s11g) + pb := uint32(s11b) + pa := uint32(s11a) + dst.Pix[d+0] = uint8(pr >> 8) + dst.Pix[d+1] = uint8(pg >> 8) + dst.Pix[d+2] = uint8(pb >> 8) + dst.Pix[d+3] = uint8(pa >> 8) + } + } +} + +func (ablInterpolator) transform_RGBA_YCbCr444_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) { + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] + sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] + if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { + continue + } + + sx -= 0.5 + sx0 := int(sx) + xFrac0 := sx - float64(sx0) + xFrac1 := 1 - xFrac0 + sx0 += bias.X + sx1 := sx0 + 1 + if sx0 < sr.Min.X { + sx0, sx1 = sr.Min.X, sr.Min.X + xFrac0, xFrac1 = 0, 1 + } else if sx1 >= sr.Max.X { + sx0, sx1 = sr.Max.X-1, sr.Max.X-1 + xFrac0, xFrac1 = 1, 0 + } + + sy -= 0.5 + sy0 := int(sy) + yFrac0 := sy - float64(sy0) + yFrac1 := 1 - yFrac0 + sy0 += bias.Y + sy1 := sy0 + 1 + if sy0 < sr.Min.Y { + sy0, sy1 = sr.Min.Y, sr.Min.Y + yFrac0, yFrac1 = 0, 1 + } else if sy1 >= sr.Max.Y { + sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 + yFrac0, yFrac1 = 1, 0 + } + + s00i := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) + s00j := (sy0-src.Rect.Min.Y)*src.CStride + (sx0 - src.Rect.Min.X) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s00yy1 := int(src.Y[s00i]) * 0x10101 + s00cb1 := int(src.Cb[s00j]) - 128 + s00cr1 := int(src.Cr[s00j]) - 128 + s00ru := (s00yy1 + 91881*s00cr1) >> 8 + s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8 + s00bu := (s00yy1 + 116130*s00cb1) >> 8 + if s00ru < 0 { + s00ru = 0 + } else if s00ru > 0xffff { + s00ru = 0xffff + } + if s00gu < 0 { + s00gu = 0 + } else if s00gu > 0xffff { + s00gu = 0xffff + } + if s00bu < 0 { + s00bu = 0 + } else if s00bu > 0xffff { + s00bu = 0xffff + } + + s00r := float64(s00ru) + s00g := float64(s00gu) + s00b := float64(s00bu) + s10i := (sy0-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X) + s10j := (sy0-src.Rect.Min.Y)*src.CStride + (sx1 - src.Rect.Min.X) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s10yy1 := int(src.Y[s10i]) * 0x10101 + s10cb1 := int(src.Cb[s10j]) - 128 + s10cr1 := int(src.Cr[s10j]) - 128 + s10ru := (s10yy1 + 91881*s10cr1) >> 8 + s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8 + s10bu := (s10yy1 + 116130*s10cb1) >> 8 + if s10ru < 0 { + s10ru = 0 + } else if s10ru > 0xffff { + s10ru = 0xffff + } + if s10gu < 0 { + s10gu = 0 + } else if s10gu > 0xffff { + s10gu = 0xffff + } + if s10bu < 0 { + s10bu = 0 + } else if s10bu > 0xffff { + s10bu = 0xffff + } + + s10r := float64(s10ru) + s10g := float64(s10gu) + s10b := float64(s10bu) + s10r = xFrac1*s00r + xFrac0*s10r + s10g = xFrac1*s00g + xFrac0*s10g + s10b = xFrac1*s00b + xFrac0*s10b + s01i := (sy1-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) + s01j := (sy1-src.Rect.Min.Y)*src.CStride + (sx0 - src.Rect.Min.X) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s01yy1 := int(src.Y[s01i]) * 0x10101 + s01cb1 := int(src.Cb[s01j]) - 128 + s01cr1 := int(src.Cr[s01j]) - 128 + s01ru := (s01yy1 + 91881*s01cr1) >> 8 + s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8 + s01bu := (s01yy1 + 116130*s01cb1) >> 8 + if s01ru < 0 { + s01ru = 0 + } else if s01ru > 0xffff { + s01ru = 0xffff + } + if s01gu < 0 { + s01gu = 0 + } else if s01gu > 0xffff { + s01gu = 0xffff + } + if s01bu < 0 { + s01bu = 0 + } else if s01bu > 0xffff { + s01bu = 0xffff + } + + s01r := float64(s01ru) + s01g := float64(s01gu) + s01b := float64(s01bu) + s11i := (sy1-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X) + s11j := (sy1-src.Rect.Min.Y)*src.CStride + (sx1 - src.Rect.Min.X) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s11yy1 := int(src.Y[s11i]) * 0x10101 + s11cb1 := int(src.Cb[s11j]) - 128 + s11cr1 := int(src.Cr[s11j]) - 128 + s11ru := (s11yy1 + 91881*s11cr1) >> 8 + s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8 + s11bu := (s11yy1 + 116130*s11cb1) >> 8 + if s11ru < 0 { + s11ru = 0 + } else if s11ru > 0xffff { + s11ru = 0xffff + } + if s11gu < 0 { + s11gu = 0 + } else if s11gu > 0xffff { + s11gu = 0xffff + } + if s11bu < 0 { + s11bu = 0 + } else if s11bu > 0xffff { + s11bu = 0xffff + } + + s11r := float64(s11ru) + s11g := float64(s11gu) + s11b := float64(s11bu) + s11r = xFrac1*s01r + xFrac0*s11r + s11g = xFrac1*s01g + xFrac0*s11g + s11b = xFrac1*s01b + xFrac0*s11b + s11r = yFrac1*s10r + yFrac0*s11r + s11g = yFrac1*s10g + yFrac0*s11g + s11b = yFrac1*s10b + yFrac0*s11b + pr := uint32(s11r) + pg := uint32(s11g) + pb := uint32(s11b) + dst.Pix[d+0] = uint8(pr >> 8) + dst.Pix[d+1] = uint8(pg >> 8) + dst.Pix[d+2] = uint8(pb >> 8) + dst.Pix[d+3] = 0xff + } + } +} + +func (ablInterpolator) transform_RGBA_YCbCr422_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) { + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] + sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] + if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { + continue + } + + sx -= 0.5 + sx0 := int(sx) + xFrac0 := sx - float64(sx0) + xFrac1 := 1 - xFrac0 + sx0 += bias.X + sx1 := sx0 + 1 + if sx0 < sr.Min.X { + sx0, sx1 = sr.Min.X, sr.Min.X + xFrac0, xFrac1 = 0, 1 + } else if sx1 >= sr.Max.X { + sx0, sx1 = sr.Max.X-1, sr.Max.X-1 + xFrac0, xFrac1 = 1, 0 + } + + sy -= 0.5 + sy0 := int(sy) + yFrac0 := sy - float64(sy0) + yFrac1 := 1 - yFrac0 + sy0 += bias.Y + sy1 := sy0 + 1 + if sy0 < sr.Min.Y { + sy0, sy1 = sr.Min.Y, sr.Min.Y + yFrac0, yFrac1 = 0, 1 + } else if sy1 >= sr.Max.Y { + sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 + yFrac0, yFrac1 = 1, 0 + } + + s00i := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) + s00j := (sy0-src.Rect.Min.Y)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s00yy1 := int(src.Y[s00i]) * 0x10101 + s00cb1 := int(src.Cb[s00j]) - 128 + s00cr1 := int(src.Cr[s00j]) - 128 + s00ru := (s00yy1 + 91881*s00cr1) >> 8 + s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8 + s00bu := (s00yy1 + 116130*s00cb1) >> 8 + if s00ru < 0 { + s00ru = 0 + } else if s00ru > 0xffff { + s00ru = 0xffff + } + if s00gu < 0 { + s00gu = 0 + } else if s00gu > 0xffff { + s00gu = 0xffff + } + if s00bu < 0 { + s00bu = 0 + } else if s00bu > 0xffff { + s00bu = 0xffff + } + + s00r := float64(s00ru) + s00g := float64(s00gu) + s00b := float64(s00bu) + s10i := (sy0-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X) + s10j := (sy0-src.Rect.Min.Y)*src.CStride + ((sx1)/2 - src.Rect.Min.X/2) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s10yy1 := int(src.Y[s10i]) * 0x10101 + s10cb1 := int(src.Cb[s10j]) - 128 + s10cr1 := int(src.Cr[s10j]) - 128 + s10ru := (s10yy1 + 91881*s10cr1) >> 8 + s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8 + s10bu := (s10yy1 + 116130*s10cb1) >> 8 + if s10ru < 0 { + s10ru = 0 + } else if s10ru > 0xffff { + s10ru = 0xffff + } + if s10gu < 0 { + s10gu = 0 + } else if s10gu > 0xffff { + s10gu = 0xffff + } + if s10bu < 0 { + s10bu = 0 + } else if s10bu > 0xffff { + s10bu = 0xffff + } + + s10r := float64(s10ru) + s10g := float64(s10gu) + s10b := float64(s10bu) + s10r = xFrac1*s00r + xFrac0*s10r + s10g = xFrac1*s00g + xFrac0*s10g + s10b = xFrac1*s00b + xFrac0*s10b + s01i := (sy1-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) + s01j := (sy1-src.Rect.Min.Y)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s01yy1 := int(src.Y[s01i]) * 0x10101 + s01cb1 := int(src.Cb[s01j]) - 128 + s01cr1 := int(src.Cr[s01j]) - 128 + s01ru := (s01yy1 + 91881*s01cr1) >> 8 + s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8 + s01bu := (s01yy1 + 116130*s01cb1) >> 8 + if s01ru < 0 { + s01ru = 0 + } else if s01ru > 0xffff { + s01ru = 0xffff + } + if s01gu < 0 { + s01gu = 0 + } else if s01gu > 0xffff { + s01gu = 0xffff + } + if s01bu < 0 { + s01bu = 0 + } else if s01bu > 0xffff { + s01bu = 0xffff + } + + s01r := float64(s01ru) + s01g := float64(s01gu) + s01b := float64(s01bu) + s11i := (sy1-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X) + s11j := (sy1-src.Rect.Min.Y)*src.CStride + ((sx1)/2 - src.Rect.Min.X/2) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s11yy1 := int(src.Y[s11i]) * 0x10101 + s11cb1 := int(src.Cb[s11j]) - 128 + s11cr1 := int(src.Cr[s11j]) - 128 + s11ru := (s11yy1 + 91881*s11cr1) >> 8 + s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8 + s11bu := (s11yy1 + 116130*s11cb1) >> 8 + if s11ru < 0 { + s11ru = 0 + } else if s11ru > 0xffff { + s11ru = 0xffff + } + if s11gu < 0 { + s11gu = 0 + } else if s11gu > 0xffff { + s11gu = 0xffff + } + if s11bu < 0 { + s11bu = 0 + } else if s11bu > 0xffff { + s11bu = 0xffff + } + + s11r := float64(s11ru) + s11g := float64(s11gu) + s11b := float64(s11bu) + s11r = xFrac1*s01r + xFrac0*s11r + s11g = xFrac1*s01g + xFrac0*s11g + s11b = xFrac1*s01b + xFrac0*s11b + s11r = yFrac1*s10r + yFrac0*s11r + s11g = yFrac1*s10g + yFrac0*s11g + s11b = yFrac1*s10b + yFrac0*s11b + pr := uint32(s11r) + pg := uint32(s11g) + pb := uint32(s11b) + dst.Pix[d+0] = uint8(pr >> 8) + dst.Pix[d+1] = uint8(pg >> 8) + dst.Pix[d+2] = uint8(pb >> 8) + dst.Pix[d+3] = 0xff + } + } +} + +func (ablInterpolator) transform_RGBA_YCbCr420_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) { + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] + sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] + if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { + continue + } + + sx -= 0.5 + sx0 := int(sx) + xFrac0 := sx - float64(sx0) + xFrac1 := 1 - xFrac0 + sx0 += bias.X + sx1 := sx0 + 1 + if sx0 < sr.Min.X { + sx0, sx1 = sr.Min.X, sr.Min.X + xFrac0, xFrac1 = 0, 1 + } else if sx1 >= sr.Max.X { + sx0, sx1 = sr.Max.X-1, sr.Max.X-1 + xFrac0, xFrac1 = 1, 0 + } + + sy -= 0.5 + sy0 := int(sy) + yFrac0 := sy - float64(sy0) + yFrac1 := 1 - yFrac0 + sy0 += bias.Y + sy1 := sy0 + 1 + if sy0 < sr.Min.Y { + sy0, sy1 = sr.Min.Y, sr.Min.Y + yFrac0, yFrac1 = 0, 1 + } else if sy1 >= sr.Max.Y { + sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 + yFrac0, yFrac1 = 1, 0 + } + + s00i := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) + s00j := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s00yy1 := int(src.Y[s00i]) * 0x10101 + s00cb1 := int(src.Cb[s00j]) - 128 + s00cr1 := int(src.Cr[s00j]) - 128 + s00ru := (s00yy1 + 91881*s00cr1) >> 8 + s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8 + s00bu := (s00yy1 + 116130*s00cb1) >> 8 + if s00ru < 0 { + s00ru = 0 + } else if s00ru > 0xffff { + s00ru = 0xffff + } + if s00gu < 0 { + s00gu = 0 + } else if s00gu > 0xffff { + s00gu = 0xffff + } + if s00bu < 0 { + s00bu = 0 + } else if s00bu > 0xffff { + s00bu = 0xffff + } + + s00r := float64(s00ru) + s00g := float64(s00gu) + s00b := float64(s00bu) + s10i := (sy0-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X) + s10j := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + ((sx1)/2 - src.Rect.Min.X/2) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s10yy1 := int(src.Y[s10i]) * 0x10101 + s10cb1 := int(src.Cb[s10j]) - 128 + s10cr1 := int(src.Cr[s10j]) - 128 + s10ru := (s10yy1 + 91881*s10cr1) >> 8 + s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8 + s10bu := (s10yy1 + 116130*s10cb1) >> 8 + if s10ru < 0 { + s10ru = 0 + } else if s10ru > 0xffff { + s10ru = 0xffff + } + if s10gu < 0 { + s10gu = 0 + } else if s10gu > 0xffff { + s10gu = 0xffff + } + if s10bu < 0 { + s10bu = 0 + } else if s10bu > 0xffff { + s10bu = 0xffff + } + + s10r := float64(s10ru) + s10g := float64(s10gu) + s10b := float64(s10bu) + s10r = xFrac1*s00r + xFrac0*s10r + s10g = xFrac1*s00g + xFrac0*s10g + s10b = xFrac1*s00b + xFrac0*s10b + s01i := (sy1-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) + s01j := ((sy1)/2-src.Rect.Min.Y/2)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s01yy1 := int(src.Y[s01i]) * 0x10101 + s01cb1 := int(src.Cb[s01j]) - 128 + s01cr1 := int(src.Cr[s01j]) - 128 + s01ru := (s01yy1 + 91881*s01cr1) >> 8 + s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8 + s01bu := (s01yy1 + 116130*s01cb1) >> 8 + if s01ru < 0 { + s01ru = 0 + } else if s01ru > 0xffff { + s01ru = 0xffff + } + if s01gu < 0 { + s01gu = 0 + } else if s01gu > 0xffff { + s01gu = 0xffff + } + if s01bu < 0 { + s01bu = 0 + } else if s01bu > 0xffff { + s01bu = 0xffff + } + + s01r := float64(s01ru) + s01g := float64(s01gu) + s01b := float64(s01bu) + s11i := (sy1-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X) + s11j := ((sy1)/2-src.Rect.Min.Y/2)*src.CStride + ((sx1)/2 - src.Rect.Min.X/2) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s11yy1 := int(src.Y[s11i]) * 0x10101 + s11cb1 := int(src.Cb[s11j]) - 128 + s11cr1 := int(src.Cr[s11j]) - 128 + s11ru := (s11yy1 + 91881*s11cr1) >> 8 + s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8 + s11bu := (s11yy1 + 116130*s11cb1) >> 8 + if s11ru < 0 { + s11ru = 0 + } else if s11ru > 0xffff { + s11ru = 0xffff + } + if s11gu < 0 { + s11gu = 0 + } else if s11gu > 0xffff { + s11gu = 0xffff + } + if s11bu < 0 { + s11bu = 0 + } else if s11bu > 0xffff { + s11bu = 0xffff + } + + s11r := float64(s11ru) + s11g := float64(s11gu) + s11b := float64(s11bu) + s11r = xFrac1*s01r + xFrac0*s11r + s11g = xFrac1*s01g + xFrac0*s11g + s11b = xFrac1*s01b + xFrac0*s11b + s11r = yFrac1*s10r + yFrac0*s11r + s11g = yFrac1*s10g + yFrac0*s11g + s11b = yFrac1*s10b + yFrac0*s11b + pr := uint32(s11r) + pg := uint32(s11g) + pb := uint32(s11b) + dst.Pix[d+0] = uint8(pr >> 8) + dst.Pix[d+1] = uint8(pg >> 8) + dst.Pix[d+2] = uint8(pb >> 8) + dst.Pix[d+3] = 0xff + } + } +} + +func (ablInterpolator) transform_RGBA_YCbCr440_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) { + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] + sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] + if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { + continue + } + + sx -= 0.5 + sx0 := int(sx) + xFrac0 := sx - float64(sx0) + xFrac1 := 1 - xFrac0 + sx0 += bias.X + sx1 := sx0 + 1 + if sx0 < sr.Min.X { + sx0, sx1 = sr.Min.X, sr.Min.X + xFrac0, xFrac1 = 0, 1 + } else if sx1 >= sr.Max.X { + sx0, sx1 = sr.Max.X-1, sr.Max.X-1 + xFrac0, xFrac1 = 1, 0 + } + + sy -= 0.5 + sy0 := int(sy) + yFrac0 := sy - float64(sy0) + yFrac1 := 1 - yFrac0 + sy0 += bias.Y + sy1 := sy0 + 1 + if sy0 < sr.Min.Y { + sy0, sy1 = sr.Min.Y, sr.Min.Y + yFrac0, yFrac1 = 0, 1 + } else if sy1 >= sr.Max.Y { + sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 + yFrac0, yFrac1 = 1, 0 + } + + s00i := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) + s00j := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + (sx0 - src.Rect.Min.X) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s00yy1 := int(src.Y[s00i]) * 0x10101 + s00cb1 := int(src.Cb[s00j]) - 128 + s00cr1 := int(src.Cr[s00j]) - 128 + s00ru := (s00yy1 + 91881*s00cr1) >> 8 + s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8 + s00bu := (s00yy1 + 116130*s00cb1) >> 8 + if s00ru < 0 { + s00ru = 0 + } else if s00ru > 0xffff { + s00ru = 0xffff + } + if s00gu < 0 { + s00gu = 0 + } else if s00gu > 0xffff { + s00gu = 0xffff + } + if s00bu < 0 { + s00bu = 0 + } else if s00bu > 0xffff { + s00bu = 0xffff + } + + s00r := float64(s00ru) + s00g := float64(s00gu) + s00b := float64(s00bu) + s10i := (sy0-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X) + s10j := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + (sx1 - src.Rect.Min.X) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s10yy1 := int(src.Y[s10i]) * 0x10101 + s10cb1 := int(src.Cb[s10j]) - 128 + s10cr1 := int(src.Cr[s10j]) - 128 + s10ru := (s10yy1 + 91881*s10cr1) >> 8 + s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8 + s10bu := (s10yy1 + 116130*s10cb1) >> 8 + if s10ru < 0 { + s10ru = 0 + } else if s10ru > 0xffff { + s10ru = 0xffff + } + if s10gu < 0 { + s10gu = 0 + } else if s10gu > 0xffff { + s10gu = 0xffff + } + if s10bu < 0 { + s10bu = 0 + } else if s10bu > 0xffff { + s10bu = 0xffff + } + + s10r := float64(s10ru) + s10g := float64(s10gu) + s10b := float64(s10bu) + s10r = xFrac1*s00r + xFrac0*s10r + s10g = xFrac1*s00g + xFrac0*s10g + s10b = xFrac1*s00b + xFrac0*s10b + s01i := (sy1-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) + s01j := ((sy1)/2-src.Rect.Min.Y/2)*src.CStride + (sx0 - src.Rect.Min.X) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s01yy1 := int(src.Y[s01i]) * 0x10101 + s01cb1 := int(src.Cb[s01j]) - 128 + s01cr1 := int(src.Cr[s01j]) - 128 + s01ru := (s01yy1 + 91881*s01cr1) >> 8 + s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8 + s01bu := (s01yy1 + 116130*s01cb1) >> 8 + if s01ru < 0 { + s01ru = 0 + } else if s01ru > 0xffff { + s01ru = 0xffff + } + if s01gu < 0 { + s01gu = 0 + } else if s01gu > 0xffff { + s01gu = 0xffff + } + if s01bu < 0 { + s01bu = 0 + } else if s01bu > 0xffff { + s01bu = 0xffff + } + + s01r := float64(s01ru) + s01g := float64(s01gu) + s01b := float64(s01bu) + s11i := (sy1-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X) + s11j := ((sy1)/2-src.Rect.Min.Y/2)*src.CStride + (sx1 - src.Rect.Min.X) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + s11yy1 := int(src.Y[s11i]) * 0x10101 + s11cb1 := int(src.Cb[s11j]) - 128 + s11cr1 := int(src.Cr[s11j]) - 128 + s11ru := (s11yy1 + 91881*s11cr1) >> 8 + s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8 + s11bu := (s11yy1 + 116130*s11cb1) >> 8 + if s11ru < 0 { + s11ru = 0 + } else if s11ru > 0xffff { + s11ru = 0xffff + } + if s11gu < 0 { + s11gu = 0 + } else if s11gu > 0xffff { + s11gu = 0xffff + } + if s11bu < 0 { + s11bu = 0 + } else if s11bu > 0xffff { + s11bu = 0xffff + } + + s11r := float64(s11ru) + s11g := float64(s11gu) + s11b := float64(s11bu) + s11r = xFrac1*s01r + xFrac0*s11r + s11g = xFrac1*s01g + xFrac0*s11g + s11b = xFrac1*s01b + xFrac0*s11b + s11r = yFrac1*s10r + yFrac0*s11r + s11g = yFrac1*s10g + yFrac0*s11g + s11b = yFrac1*s10b + yFrac0*s11b + pr := uint32(s11r) + pg := uint32(s11g) + pb := uint32(s11b) + dst.Pix[d+0] = uint8(pr >> 8) + dst.Pix[d+1] = uint8(pg >> 8) + dst.Pix[d+2] = uint8(pb >> 8) + dst.Pix[d+3] = 0xff + } + } +} + +func (ablInterpolator) transform_RGBA_Image_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) { + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] + sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] + if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { + continue + } + + sx -= 0.5 + sx0 := int(sx) + xFrac0 := sx - float64(sx0) + xFrac1 := 1 - xFrac0 + sx0 += bias.X + sx1 := sx0 + 1 + if sx0 < sr.Min.X { + sx0, sx1 = sr.Min.X, sr.Min.X + xFrac0, xFrac1 = 0, 1 + } else if sx1 >= sr.Max.X { + sx0, sx1 = sr.Max.X-1, sr.Max.X-1 + xFrac0, xFrac1 = 1, 0 + } + + sy -= 0.5 + sy0 := int(sy) + yFrac0 := sy - float64(sy0) + yFrac1 := 1 - yFrac0 + sy0 += bias.Y + sy1 := sy0 + 1 + if sy0 < sr.Min.Y { + sy0, sy1 = sr.Min.Y, sr.Min.Y + yFrac0, yFrac1 = 0, 1 + } else if sy1 >= sr.Max.Y { + sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 + yFrac0, yFrac1 = 1, 0 + } + + s00ru, s00gu, s00bu, s00au := src.At(sx0, sy0).RGBA() + s00r := float64(s00ru) + s00g := float64(s00gu) + s00b := float64(s00bu) + s00a := float64(s00au) + s10ru, s10gu, s10bu, s10au := src.At(sx1, sy0).RGBA() + s10r := float64(s10ru) + s10g := float64(s10gu) + s10b := float64(s10bu) + s10a := float64(s10au) + s10r = xFrac1*s00r + xFrac0*s10r + s10g = xFrac1*s00g + xFrac0*s10g + s10b = xFrac1*s00b + xFrac0*s10b + s10a = xFrac1*s00a + xFrac0*s10a + s01ru, s01gu, s01bu, s01au := src.At(sx0, sy1).RGBA() + s01r := float64(s01ru) + s01g := float64(s01gu) + s01b := float64(s01bu) + s01a := float64(s01au) + s11ru, s11gu, s11bu, s11au := src.At(sx1, sy1).RGBA() + s11r := float64(s11ru) + s11g := float64(s11gu) + s11b := float64(s11bu) + s11a := float64(s11au) + s11r = xFrac1*s01r + xFrac0*s11r + s11g = xFrac1*s01g + xFrac0*s11g + s11b = xFrac1*s01b + xFrac0*s11b + s11a = xFrac1*s01a + xFrac0*s11a + s11r = yFrac1*s10r + yFrac0*s11r + s11g = yFrac1*s10g + yFrac0*s11g + s11b = yFrac1*s10b + yFrac0*s11b + s11a = yFrac1*s10a + yFrac0*s11a + pr := uint32(s11r) + pg := uint32(s11g) + pb := uint32(s11b) + pa := uint32(s11a) + pa1 := (0xffff - pa) * 0x101 + dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8) + dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8) + dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8) + dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8) + } + } +} + +func (ablInterpolator) transform_RGBA_Image_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) { + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] + sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] + if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { + continue + } + + sx -= 0.5 + sx0 := int(sx) + xFrac0 := sx - float64(sx0) + xFrac1 := 1 - xFrac0 + sx0 += bias.X + sx1 := sx0 + 1 + if sx0 < sr.Min.X { + sx0, sx1 = sr.Min.X, sr.Min.X + xFrac0, xFrac1 = 0, 1 + } else if sx1 >= sr.Max.X { + sx0, sx1 = sr.Max.X-1, sr.Max.X-1 + xFrac0, xFrac1 = 1, 0 + } + + sy -= 0.5 + sy0 := int(sy) + yFrac0 := sy - float64(sy0) + yFrac1 := 1 - yFrac0 + sy0 += bias.Y + sy1 := sy0 + 1 + if sy0 < sr.Min.Y { + sy0, sy1 = sr.Min.Y, sr.Min.Y + yFrac0, yFrac1 = 0, 1 + } else if sy1 >= sr.Max.Y { + sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 + yFrac0, yFrac1 = 1, 0 + } + + s00ru, s00gu, s00bu, s00au := src.At(sx0, sy0).RGBA() + s00r := float64(s00ru) + s00g := float64(s00gu) + s00b := float64(s00bu) + s00a := float64(s00au) + s10ru, s10gu, s10bu, s10au := src.At(sx1, sy0).RGBA() + s10r := float64(s10ru) + s10g := float64(s10gu) + s10b := float64(s10bu) + s10a := float64(s10au) + s10r = xFrac1*s00r + xFrac0*s10r + s10g = xFrac1*s00g + xFrac0*s10g + s10b = xFrac1*s00b + xFrac0*s10b + s10a = xFrac1*s00a + xFrac0*s10a + s01ru, s01gu, s01bu, s01au := src.At(sx0, sy1).RGBA() + s01r := float64(s01ru) + s01g := float64(s01gu) + s01b := float64(s01bu) + s01a := float64(s01au) + s11ru, s11gu, s11bu, s11au := src.At(sx1, sy1).RGBA() + s11r := float64(s11ru) + s11g := float64(s11gu) + s11b := float64(s11bu) + s11a := float64(s11au) + s11r = xFrac1*s01r + xFrac0*s11r + s11g = xFrac1*s01g + xFrac0*s11g + s11b = xFrac1*s01b + xFrac0*s11b + s11a = xFrac1*s01a + xFrac0*s11a + s11r = yFrac1*s10r + yFrac0*s11r + s11g = yFrac1*s10g + yFrac0*s11g + s11b = yFrac1*s10b + yFrac0*s11b + s11a = yFrac1*s10a + yFrac0*s11a + pr := uint32(s11r) + pg := uint32(s11g) + pb := uint32(s11b) + pa := uint32(s11a) + dst.Pix[d+0] = uint8(pr >> 8) + dst.Pix[d+1] = uint8(pg >> 8) + dst.Pix[d+2] = uint8(pb >> 8) + dst.Pix[d+3] = uint8(pa >> 8) + } + } +} + +func (ablInterpolator) transform_Image_Image_Over(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) { + srcMask, smp := opts.SrcMask, opts.SrcMaskP + dstMask, dmp := opts.DstMask, opts.DstMaskP + dstColorRGBA64 := &color.RGBA64{} + dstColor := color.Color(dstColorRGBA64) + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] + sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] + if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { + continue + } + + sx -= 0.5 + sx0 := int(sx) + xFrac0 := sx - float64(sx0) + xFrac1 := 1 - xFrac0 + sx0 += bias.X + sx1 := sx0 + 1 + if sx0 < sr.Min.X { + sx0, sx1 = sr.Min.X, sr.Min.X + xFrac0, xFrac1 = 0, 1 + } else if sx1 >= sr.Max.X { + sx0, sx1 = sr.Max.X-1, sr.Max.X-1 + xFrac0, xFrac1 = 1, 0 + } + + sy -= 0.5 + sy0 := int(sy) + yFrac0 := sy - float64(sy0) + yFrac1 := 1 - yFrac0 + sy0 += bias.Y + sy1 := sy0 + 1 + if sy0 < sr.Min.Y { + sy0, sy1 = sr.Min.Y, sr.Min.Y + yFrac0, yFrac1 = 0, 1 + } else if sy1 >= sr.Max.Y { + sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 + yFrac0, yFrac1 = 1, 0 + } + + s00ru, s00gu, s00bu, s00au := src.At(sx0, sy0).RGBA() + if srcMask != nil { + _, _, _, ma := srcMask.At(smp.X+sx0, smp.Y+sy0).RGBA() + s00ru = s00ru * ma / 0xffff + s00gu = s00gu * ma / 0xffff + s00bu = s00bu * ma / 0xffff + s00au = s00au * ma / 0xffff + } + s00r := float64(s00ru) + s00g := float64(s00gu) + s00b := float64(s00bu) + s00a := float64(s00au) + s10ru, s10gu, s10bu, s10au := src.At(sx1, sy0).RGBA() + if srcMask != nil { + _, _, _, ma := srcMask.At(smp.X+sx1, smp.Y+sy0).RGBA() + s10ru = s10ru * ma / 0xffff + s10gu = s10gu * ma / 0xffff + s10bu = s10bu * ma / 0xffff + s10au = s10au * ma / 0xffff + } + s10r := float64(s10ru) + s10g := float64(s10gu) + s10b := float64(s10bu) + s10a := float64(s10au) + s10r = xFrac1*s00r + xFrac0*s10r + s10g = xFrac1*s00g + xFrac0*s10g + s10b = xFrac1*s00b + xFrac0*s10b + s10a = xFrac1*s00a + xFrac0*s10a + s01ru, s01gu, s01bu, s01au := src.At(sx0, sy1).RGBA() + if srcMask != nil { + _, _, _, ma := srcMask.At(smp.X+sx0, smp.Y+sy1).RGBA() + s01ru = s01ru * ma / 0xffff + s01gu = s01gu * ma / 0xffff + s01bu = s01bu * ma / 0xffff + s01au = s01au * ma / 0xffff + } + s01r := float64(s01ru) + s01g := float64(s01gu) + s01b := float64(s01bu) + s01a := float64(s01au) + s11ru, s11gu, s11bu, s11au := src.At(sx1, sy1).RGBA() + if srcMask != nil { + _, _, _, ma := srcMask.At(smp.X+sx1, smp.Y+sy1).RGBA() + s11ru = s11ru * ma / 0xffff + s11gu = s11gu * ma / 0xffff + s11bu = s11bu * ma / 0xffff + s11au = s11au * ma / 0xffff + } + s11r := float64(s11ru) + s11g := float64(s11gu) + s11b := float64(s11bu) + s11a := float64(s11au) + s11r = xFrac1*s01r + xFrac0*s11r + s11g = xFrac1*s01g + xFrac0*s11g + s11b = xFrac1*s01b + xFrac0*s11b + s11a = xFrac1*s01a + xFrac0*s11a + s11r = yFrac1*s10r + yFrac0*s11r + s11g = yFrac1*s10g + yFrac0*s11g + s11b = yFrac1*s10b + yFrac0*s11b + s11a = yFrac1*s10a + yFrac0*s11a + pr := uint32(s11r) + pg := uint32(s11g) + pb := uint32(s11b) + pa := uint32(s11a) + qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA() + if dstMask != nil { + _, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA() + pr = pr * ma / 0xffff + pg = pg * ma / 0xffff + pb = pb * ma / 0xffff + pa = pa * ma / 0xffff + } + pa1 := 0xffff - pa + dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr) + dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg) + dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb) + dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa) + dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor) + } + } +} + +func (ablInterpolator) transform_Image_Image_Src(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) { + srcMask, smp := opts.SrcMask, opts.SrcMaskP + dstMask, dmp := opts.DstMask, opts.DstMaskP + dstColorRGBA64 := &color.RGBA64{} + dstColor := color.Color(dstColorRGBA64) + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] + sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] + if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { + continue + } + + sx -= 0.5 + sx0 := int(sx) + xFrac0 := sx - float64(sx0) + xFrac1 := 1 - xFrac0 + sx0 += bias.X + sx1 := sx0 + 1 + if sx0 < sr.Min.X { + sx0, sx1 = sr.Min.X, sr.Min.X + xFrac0, xFrac1 = 0, 1 + } else if sx1 >= sr.Max.X { + sx0, sx1 = sr.Max.X-1, sr.Max.X-1 + xFrac0, xFrac1 = 1, 0 + } + + sy -= 0.5 + sy0 := int(sy) + yFrac0 := sy - float64(sy0) + yFrac1 := 1 - yFrac0 + sy0 += bias.Y + sy1 := sy0 + 1 + if sy0 < sr.Min.Y { + sy0, sy1 = sr.Min.Y, sr.Min.Y + yFrac0, yFrac1 = 0, 1 + } else if sy1 >= sr.Max.Y { + sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 + yFrac0, yFrac1 = 1, 0 + } + + s00ru, s00gu, s00bu, s00au := src.At(sx0, sy0).RGBA() + if srcMask != nil { + _, _, _, ma := srcMask.At(smp.X+sx0, smp.Y+sy0).RGBA() + s00ru = s00ru * ma / 0xffff + s00gu = s00gu * ma / 0xffff + s00bu = s00bu * ma / 0xffff + s00au = s00au * ma / 0xffff + } + s00r := float64(s00ru) + s00g := float64(s00gu) + s00b := float64(s00bu) + s00a := float64(s00au) + s10ru, s10gu, s10bu, s10au := src.At(sx1, sy0).RGBA() + if srcMask != nil { + _, _, _, ma := srcMask.At(smp.X+sx1, smp.Y+sy0).RGBA() + s10ru = s10ru * ma / 0xffff + s10gu = s10gu * ma / 0xffff + s10bu = s10bu * ma / 0xffff + s10au = s10au * ma / 0xffff + } + s10r := float64(s10ru) + s10g := float64(s10gu) + s10b := float64(s10bu) + s10a := float64(s10au) + s10r = xFrac1*s00r + xFrac0*s10r + s10g = xFrac1*s00g + xFrac0*s10g + s10b = xFrac1*s00b + xFrac0*s10b + s10a = xFrac1*s00a + xFrac0*s10a + s01ru, s01gu, s01bu, s01au := src.At(sx0, sy1).RGBA() + if srcMask != nil { + _, _, _, ma := srcMask.At(smp.X+sx0, smp.Y+sy1).RGBA() + s01ru = s01ru * ma / 0xffff + s01gu = s01gu * ma / 0xffff + s01bu = s01bu * ma / 0xffff + s01au = s01au * ma / 0xffff + } + s01r := float64(s01ru) + s01g := float64(s01gu) + s01b := float64(s01bu) + s01a := float64(s01au) + s11ru, s11gu, s11bu, s11au := src.At(sx1, sy1).RGBA() + if srcMask != nil { + _, _, _, ma := srcMask.At(smp.X+sx1, smp.Y+sy1).RGBA() + s11ru = s11ru * ma / 0xffff + s11gu = s11gu * ma / 0xffff + s11bu = s11bu * ma / 0xffff + s11au = s11au * ma / 0xffff + } + s11r := float64(s11ru) + s11g := float64(s11gu) + s11b := float64(s11bu) + s11a := float64(s11au) + s11r = xFrac1*s01r + xFrac0*s11r + s11g = xFrac1*s01g + xFrac0*s11g + s11b = xFrac1*s01b + xFrac0*s11b + s11a = xFrac1*s01a + xFrac0*s11a + s11r = yFrac1*s10r + yFrac0*s11r + s11g = yFrac1*s10g + yFrac0*s11g + s11b = yFrac1*s10b + yFrac0*s11b + s11a = yFrac1*s10a + yFrac0*s11a + pr := uint32(s11r) + pg := uint32(s11g) + pb := uint32(s11b) + pa := uint32(s11a) + if dstMask != nil { + qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA() + _, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA() + pr = pr * ma / 0xffff + pg = pg * ma / 0xffff + pb = pb * ma / 0xffff + pa = pa * ma / 0xffff + pa1 := 0xffff - ma + dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr) + dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg) + dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb) + dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa) + dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor) + } else { + dstColorRGBA64.R = uint16(pr) + dstColorRGBA64.G = uint16(pg) + dstColorRGBA64.B = uint16(pb) + dstColorRGBA64.A = uint16(pa) + dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor) + } + } + } +} + +func (z *kernelScaler) Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, op Op, opts *Options) { + if z.dw != int32(dr.Dx()) || z.dh != int32(dr.Dy()) || z.sw != int32(sr.Dx()) || z.sh != int32(sr.Dy()) { + z.kernel.Scale(dst, dr, src, sr, op, opts) + return + } + + var o Options + if opts != nil { + o = *opts + } + + // adr is the affected destination pixels. + adr := dst.Bounds().Intersect(dr) + adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP) + if adr.Empty() || sr.Empty() { + return + } + // Make adr relative to dr.Min. + adr = adr.Sub(dr.Min) + if op == Over && o.SrcMask == nil && opaque(src) { + op = Src + } + + if _, ok := src.(*image.Uniform); ok && o.DstMask == nil && o.SrcMask == nil && sr.In(src.Bounds()) { + Draw(dst, dr, src, src.Bounds().Min, op) + return + } + + // Create a temporary buffer: + // scaleX distributes the source image's columns over the temporary image. + // scaleY distributes the temporary image's rows over the destination image. + var tmp [][4]float64 + if z.pool.New != nil { + tmpp := z.pool.Get().(*[][4]float64) + defer z.pool.Put(tmpp) + tmp = *tmpp + } else { + tmp = z.makeTmpBuf() + } + + // sr is the source pixels. If it extends beyond the src bounds, + // we cannot use the type-specific fast paths, as they access + // the Pix fields directly without bounds checking. + // + // Similarly, the fast paths assume that the masks are nil. + if o.SrcMask != nil || !sr.In(src.Bounds()) { + z.scaleX_Image(tmp, src, sr, &o) + } else { + switch src := src.(type) { + case *image.Gray: + z.scaleX_Gray(tmp, src, sr, &o) + case *image.NRGBA: + z.scaleX_NRGBA(tmp, src, sr, &o) + case *image.RGBA: + z.scaleX_RGBA(tmp, src, sr, &o) + case *image.YCbCr: + switch src.SubsampleRatio { + default: + z.scaleX_Image(tmp, src, sr, &o) + case image.YCbCrSubsampleRatio444: + z.scaleX_YCbCr444(tmp, src, sr, &o) + case image.YCbCrSubsampleRatio422: + z.scaleX_YCbCr422(tmp, src, sr, &o) + case image.YCbCrSubsampleRatio420: + z.scaleX_YCbCr420(tmp, src, sr, &o) + case image.YCbCrSubsampleRatio440: + z.scaleX_YCbCr440(tmp, src, sr, &o) + } + default: + z.scaleX_Image(tmp, src, sr, &o) + } + } + + if o.DstMask != nil { + switch op { + case Over: + z.scaleY_Image_Over(dst, dr, adr, tmp, &o) + case Src: + z.scaleY_Image_Src(dst, dr, adr, tmp, &o) + } + } else { + switch op { + case Over: + switch dst := dst.(type) { + case *image.RGBA: + z.scaleY_RGBA_Over(dst, dr, adr, tmp, &o) + default: + z.scaleY_Image_Over(dst, dr, adr, tmp, &o) + } + case Src: + switch dst := dst.(type) { + case *image.RGBA: + z.scaleY_RGBA_Src(dst, dr, adr, tmp, &o) + default: + z.scaleY_Image_Src(dst, dr, adr, tmp, &o) + } + } + } +} + +func (q *Kernel) Transform(dst Image, s2d f64.Aff3, src image.Image, sr image.Rectangle, op Op, opts *Options) { + var o Options + if opts != nil { + o = *opts + } + + dr := transformRect(&s2d, &sr) + // adr is the affected destination pixels. + adr := dst.Bounds().Intersect(dr) + adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP) + if adr.Empty() || sr.Empty() { + return + } + if op == Over && o.SrcMask == nil && opaque(src) { + op = Src + } + d2s := invert(&s2d) + // bias is a translation of the mapping from dst coordinates to src + // coordinates such that the latter temporarily have non-negative X + // and Y coordinates. This allows us to write int(f) instead of + // int(math.Floor(f)), since "round to zero" and "round down" are + // equivalent when f >= 0, but the former is much cheaper. The X-- + // and Y-- are because the TransformLeaf methods have a "sx -= 0.5" + // adjustment. + bias := transformRect(&d2s, &adr).Min + bias.X-- + bias.Y-- + d2s[2] -= float64(bias.X) + d2s[5] -= float64(bias.Y) + // Make adr relative to dr.Min. + adr = adr.Sub(dr.Min) + + if u, ok := src.(*image.Uniform); ok && o.DstMask != nil && o.SrcMask != nil && sr.In(src.Bounds()) { + transform_Uniform(dst, dr, adr, &d2s, u, sr, bias, op) + return + } + + xscale := abs(d2s[0]) + if s := abs(d2s[1]); xscale < s { + xscale = s + } + yscale := abs(d2s[3]) + if s := abs(d2s[4]); yscale < s { + yscale = s + } + + // sr is the source pixels. If it extends beyond the src bounds, + // we cannot use the type-specific fast paths, as they access + // the Pix fields directly without bounds checking. + // + // Similarly, the fast paths assume that the masks are nil. + if o.DstMask != nil || o.SrcMask != nil || !sr.In(src.Bounds()) { + switch op { + case Over: + q.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o) + case Src: + q.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o) + } + } else { + switch op { + case Over: + switch dst := dst.(type) { + case *image.RGBA: + switch src := src.(type) { + case *image.NRGBA: + q.transform_RGBA_NRGBA_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o) + case *image.RGBA: + q.transform_RGBA_RGBA_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o) + default: + q.transform_RGBA_Image_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o) + } + default: + switch src := src.(type) { + default: + q.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o) + } + } + case Src: + switch dst := dst.(type) { + case *image.RGBA: + switch src := src.(type) { + case *image.Gray: + q.transform_RGBA_Gray_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o) + case *image.NRGBA: + q.transform_RGBA_NRGBA_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o) + case *image.RGBA: + q.transform_RGBA_RGBA_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o) + case *image.YCbCr: + switch src.SubsampleRatio { + default: + q.transform_RGBA_Image_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o) + case image.YCbCrSubsampleRatio444: + q.transform_RGBA_YCbCr444_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o) + case image.YCbCrSubsampleRatio422: + q.transform_RGBA_YCbCr422_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o) + case image.YCbCrSubsampleRatio420: + q.transform_RGBA_YCbCr420_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o) + case image.YCbCrSubsampleRatio440: + q.transform_RGBA_YCbCr440_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o) + } + default: + q.transform_RGBA_Image_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o) + } + default: + switch src := src.(type) { + default: + q.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o) + } + } + } + } +} + +func (z *kernelScaler) scaleX_Gray(tmp [][4]float64, src *image.Gray, sr image.Rectangle, opts *Options) { + t := 0 + for y := int32(0); y < z.sh; y++ { + for _, s := range z.horizontal.sources { + var pr float64 + for _, c := range z.horizontal.contribs[s.i:s.j] { + pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(c.coord) - src.Rect.Min.X) + pru := uint32(src.Pix[pi]) * 0x101 + pr += float64(pru) * c.weight + } + pr *= s.invTotalWeightFFFF + tmp[t] = [4]float64{ + pr, + pr, + pr, + 1, + } + t++ + } + } +} + +func (z *kernelScaler) scaleX_NRGBA(tmp [][4]float64, src *image.NRGBA, sr image.Rectangle, opts *Options) { + t := 0 + for y := int32(0); y < z.sh; y++ { + for _, s := range z.horizontal.sources { + var pr, pg, pb, pa float64 + for _, c := range z.horizontal.contribs[s.i:s.j] { + pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(c.coord)-src.Rect.Min.X)*4 + pau := uint32(src.Pix[pi+3]) * 0x101 + pru := uint32(src.Pix[pi+0]) * pau / 0xff + pgu := uint32(src.Pix[pi+1]) * pau / 0xff + pbu := uint32(src.Pix[pi+2]) * pau / 0xff + pr += float64(pru) * c.weight + pg += float64(pgu) * c.weight + pb += float64(pbu) * c.weight + pa += float64(pau) * c.weight + } + tmp[t] = [4]float64{ + pr * s.invTotalWeightFFFF, + pg * s.invTotalWeightFFFF, + pb * s.invTotalWeightFFFF, + pa * s.invTotalWeightFFFF, + } + t++ + } + } +} + +func (z *kernelScaler) scaleX_RGBA(tmp [][4]float64, src *image.RGBA, sr image.Rectangle, opts *Options) { + t := 0 + for y := int32(0); y < z.sh; y++ { + for _, s := range z.horizontal.sources { + var pr, pg, pb, pa float64 + for _, c := range z.horizontal.contribs[s.i:s.j] { + pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(c.coord)-src.Rect.Min.X)*4 + pru := uint32(src.Pix[pi+0]) * 0x101 + pgu := uint32(src.Pix[pi+1]) * 0x101 + pbu := uint32(src.Pix[pi+2]) * 0x101 + pau := uint32(src.Pix[pi+3]) * 0x101 + pr += float64(pru) * c.weight + pg += float64(pgu) * c.weight + pb += float64(pbu) * c.weight + pa += float64(pau) * c.weight + } + tmp[t] = [4]float64{ + pr * s.invTotalWeightFFFF, + pg * s.invTotalWeightFFFF, + pb * s.invTotalWeightFFFF, + pa * s.invTotalWeightFFFF, + } + t++ + } + } +} + +func (z *kernelScaler) scaleX_YCbCr444(tmp [][4]float64, src *image.YCbCr, sr image.Rectangle, opts *Options) { + t := 0 + for y := int32(0); y < z.sh; y++ { + for _, s := range z.horizontal.sources { + var pr, pg, pb float64 + for _, c := range z.horizontal.contribs[s.i:s.j] { + pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X) + pj := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + pyy1 := int(src.Y[pi]) * 0x10101 + pcb1 := int(src.Cb[pj]) - 128 + pcr1 := int(src.Cr[pj]) - 128 + pru := (pyy1 + 91881*pcr1) >> 8 + pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 + pbu := (pyy1 + 116130*pcb1) >> 8 + if pru < 0 { + pru = 0 + } else if pru > 0xffff { + pru = 0xffff + } + if pgu < 0 { + pgu = 0 + } else if pgu > 0xffff { + pgu = 0xffff + } + if pbu < 0 { + pbu = 0 + } else if pbu > 0xffff { + pbu = 0xffff + } + + pr += float64(pru) * c.weight + pg += float64(pgu) * c.weight + pb += float64(pbu) * c.weight + } + tmp[t] = [4]float64{ + pr * s.invTotalWeightFFFF, + pg * s.invTotalWeightFFFF, + pb * s.invTotalWeightFFFF, + 1, + } + t++ + } + } +} + +func (z *kernelScaler) scaleX_YCbCr422(tmp [][4]float64, src *image.YCbCr, sr image.Rectangle, opts *Options) { + t := 0 + for y := int32(0); y < z.sh; y++ { + for _, s := range z.horizontal.sources { + var pr, pg, pb float64 + for _, c := range z.horizontal.contribs[s.i:s.j] { + pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X) + pj := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(c.coord))/2 - src.Rect.Min.X/2) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + pyy1 := int(src.Y[pi]) * 0x10101 + pcb1 := int(src.Cb[pj]) - 128 + pcr1 := int(src.Cr[pj]) - 128 + pru := (pyy1 + 91881*pcr1) >> 8 + pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 + pbu := (pyy1 + 116130*pcb1) >> 8 + if pru < 0 { + pru = 0 + } else if pru > 0xffff { + pru = 0xffff + } + if pgu < 0 { + pgu = 0 + } else if pgu > 0xffff { + pgu = 0xffff + } + if pbu < 0 { + pbu = 0 + } else if pbu > 0xffff { + pbu = 0xffff + } + + pr += float64(pru) * c.weight + pg += float64(pgu) * c.weight + pb += float64(pbu) * c.weight + } + tmp[t] = [4]float64{ + pr * s.invTotalWeightFFFF, + pg * s.invTotalWeightFFFF, + pb * s.invTotalWeightFFFF, + 1, + } + t++ + } + } +} + +func (z *kernelScaler) scaleX_YCbCr420(tmp [][4]float64, src *image.YCbCr, sr image.Rectangle, opts *Options) { + t := 0 + for y := int32(0); y < z.sh; y++ { + for _, s := range z.horizontal.sources { + var pr, pg, pb float64 + for _, c := range z.horizontal.contribs[s.i:s.j] { + pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X) + pj := ((sr.Min.Y+int(y))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(c.coord))/2 - src.Rect.Min.X/2) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + pyy1 := int(src.Y[pi]) * 0x10101 + pcb1 := int(src.Cb[pj]) - 128 + pcr1 := int(src.Cr[pj]) - 128 + pru := (pyy1 + 91881*pcr1) >> 8 + pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 + pbu := (pyy1 + 116130*pcb1) >> 8 + if pru < 0 { + pru = 0 + } else if pru > 0xffff { + pru = 0xffff + } + if pgu < 0 { + pgu = 0 + } else if pgu > 0xffff { + pgu = 0xffff + } + if pbu < 0 { + pbu = 0 + } else if pbu > 0xffff { + pbu = 0xffff + } + + pr += float64(pru) * c.weight + pg += float64(pgu) * c.weight + pb += float64(pbu) * c.weight + } + tmp[t] = [4]float64{ + pr * s.invTotalWeightFFFF, + pg * s.invTotalWeightFFFF, + pb * s.invTotalWeightFFFF, + 1, + } + t++ + } + } +} + +func (z *kernelScaler) scaleX_YCbCr440(tmp [][4]float64, src *image.YCbCr, sr image.Rectangle, opts *Options) { + t := 0 + for y := int32(0); y < z.sh; y++ { + for _, s := range z.horizontal.sources { + var pr, pg, pb float64 + for _, c := range z.horizontal.contribs[s.i:s.j] { + pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X) + pj := ((sr.Min.Y+int(y))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + pyy1 := int(src.Y[pi]) * 0x10101 + pcb1 := int(src.Cb[pj]) - 128 + pcr1 := int(src.Cr[pj]) - 128 + pru := (pyy1 + 91881*pcr1) >> 8 + pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 + pbu := (pyy1 + 116130*pcb1) >> 8 + if pru < 0 { + pru = 0 + } else if pru > 0xffff { + pru = 0xffff + } + if pgu < 0 { + pgu = 0 + } else if pgu > 0xffff { + pgu = 0xffff + } + if pbu < 0 { + pbu = 0 + } else if pbu > 0xffff { + pbu = 0xffff + } + + pr += float64(pru) * c.weight + pg += float64(pgu) * c.weight + pb += float64(pbu) * c.weight + } + tmp[t] = [4]float64{ + pr * s.invTotalWeightFFFF, + pg * s.invTotalWeightFFFF, + pb * s.invTotalWeightFFFF, + 1, + } + t++ + } + } +} + +func (z *kernelScaler) scaleX_Image(tmp [][4]float64, src image.Image, sr image.Rectangle, opts *Options) { + t := 0 + srcMask, smp := opts.SrcMask, opts.SrcMaskP + for y := int32(0); y < z.sh; y++ { + for _, s := range z.horizontal.sources { + var pr, pg, pb, pa float64 + for _, c := range z.horizontal.contribs[s.i:s.j] { + pru, pgu, pbu, pau := src.At(sr.Min.X+int(c.coord), sr.Min.Y+int(y)).RGBA() + if srcMask != nil { + _, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(c.coord), smp.Y+sr.Min.Y+int(y)).RGBA() + pru = pru * ma / 0xffff + pgu = pgu * ma / 0xffff + pbu = pbu * ma / 0xffff + pau = pau * ma / 0xffff + } + pr += float64(pru) * c.weight + pg += float64(pgu) * c.weight + pb += float64(pbu) * c.weight + pa += float64(pau) * c.weight + } + tmp[t] = [4]float64{ + pr * s.invTotalWeightFFFF, + pg * s.invTotalWeightFFFF, + pb * s.invTotalWeightFFFF, + pa * s.invTotalWeightFFFF, + } + t++ + } + } +} + +func (z *kernelScaler) scaleY_RGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, tmp [][4]float64, opts *Options) { + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { + d := (dr.Min.Y+adr.Min.Y-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+int(dx)-dst.Rect.Min.X)*4 + for _, s := range z.vertical.sources[adr.Min.Y:adr.Max.Y] { + var pr, pg, pb, pa float64 + for _, c := range z.vertical.contribs[s.i:s.j] { + p := &tmp[c.coord*z.dw+dx] + pr += p[0] * c.weight + pg += p[1] * c.weight + pb += p[2] * c.weight + pa += p[3] * c.weight + } + + if pr > pa { + pr = pa + } + if pg > pa { + pg = pa + } + if pb > pa { + pb = pa + } + + pr0 := uint32(ftou(pr * s.invTotalWeight)) + pg0 := uint32(ftou(pg * s.invTotalWeight)) + pb0 := uint32(ftou(pb * s.invTotalWeight)) + pa0 := uint32(ftou(pa * s.invTotalWeight)) + pa1 := (0xffff - uint32(pa0)) * 0x101 + dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr0) >> 8) + dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg0) >> 8) + dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb0) >> 8) + dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa0) >> 8) + d += dst.Stride + } + } +} + +func (z *kernelScaler) scaleY_RGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, tmp [][4]float64, opts *Options) { + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { + d := (dr.Min.Y+adr.Min.Y-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+int(dx)-dst.Rect.Min.X)*4 + for _, s := range z.vertical.sources[adr.Min.Y:adr.Max.Y] { + var pr, pg, pb, pa float64 + for _, c := range z.vertical.contribs[s.i:s.j] { + p := &tmp[c.coord*z.dw+dx] + pr += p[0] * c.weight + pg += p[1] * c.weight + pb += p[2] * c.weight + pa += p[3] * c.weight + } + + if pr > pa { + pr = pa + } + if pg > pa { + pg = pa + } + if pb > pa { + pb = pa + } + + dst.Pix[d+0] = uint8(ftou(pr*s.invTotalWeight) >> 8) + dst.Pix[d+1] = uint8(ftou(pg*s.invTotalWeight) >> 8) + dst.Pix[d+2] = uint8(ftou(pb*s.invTotalWeight) >> 8) + dst.Pix[d+3] = uint8(ftou(pa*s.invTotalWeight) >> 8) + d += dst.Stride + } + } +} + +func (z *kernelScaler) scaleY_Image_Over(dst Image, dr, adr image.Rectangle, tmp [][4]float64, opts *Options) { + dstMask, dmp := opts.DstMask, opts.DstMaskP + dstColorRGBA64 := &color.RGBA64{} + dstColor := color.Color(dstColorRGBA64) + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { + for dy, s := range z.vertical.sources[adr.Min.Y:adr.Max.Y] { + var pr, pg, pb, pa float64 + for _, c := range z.vertical.contribs[s.i:s.j] { + p := &tmp[c.coord*z.dw+dx] + pr += p[0] * c.weight + pg += p[1] * c.weight + pb += p[2] * c.weight + pa += p[3] * c.weight + } + + if pr > pa { + pr = pa + } + if pg > pa { + pg = pa + } + if pb > pa { + pb = pa + } + + qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(adr.Min.Y+dy)).RGBA() + pr0 := uint32(ftou(pr * s.invTotalWeight)) + pg0 := uint32(ftou(pg * s.invTotalWeight)) + pb0 := uint32(ftou(pb * s.invTotalWeight)) + pa0 := uint32(ftou(pa * s.invTotalWeight)) + if dstMask != nil { + _, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(adr.Min.Y+dy)).RGBA() + pr0 = pr0 * ma / 0xffff + pg0 = pg0 * ma / 0xffff + pb0 = pb0 * ma / 0xffff + pa0 = pa0 * ma / 0xffff + } + pa1 := 0xffff - pa0 + dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr0) + dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg0) + dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb0) + dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa0) + dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(adr.Min.Y+dy), dstColor) + } + } +} + +func (z *kernelScaler) scaleY_Image_Src(dst Image, dr, adr image.Rectangle, tmp [][4]float64, opts *Options) { + dstMask, dmp := opts.DstMask, opts.DstMaskP + dstColorRGBA64 := &color.RGBA64{} + dstColor := color.Color(dstColorRGBA64) + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { + for dy, s := range z.vertical.sources[adr.Min.Y:adr.Max.Y] { + var pr, pg, pb, pa float64 + for _, c := range z.vertical.contribs[s.i:s.j] { + p := &tmp[c.coord*z.dw+dx] + pr += p[0] * c.weight + pg += p[1] * c.weight + pb += p[2] * c.weight + pa += p[3] * c.weight + } + + if pr > pa { + pr = pa + } + if pg > pa { + pg = pa + } + if pb > pa { + pb = pa + } + + if dstMask != nil { + qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(adr.Min.Y+dy)).RGBA() + _, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(adr.Min.Y+dy)).RGBA() + pr := uint32(ftou(pr*s.invTotalWeight)) * ma / 0xffff + pg := uint32(ftou(pg*s.invTotalWeight)) * ma / 0xffff + pb := uint32(ftou(pb*s.invTotalWeight)) * ma / 0xffff + pa := uint32(ftou(pa*s.invTotalWeight)) * ma / 0xffff + pa1 := 0xffff - ma + dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr) + dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg) + dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb) + dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa) + dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(adr.Min.Y+dy), dstColor) + } else { + dstColorRGBA64.R = ftou(pr * s.invTotalWeight) + dstColorRGBA64.G = ftou(pg * s.invTotalWeight) + dstColorRGBA64.B = ftou(pb * s.invTotalWeight) + dstColorRGBA64.A = ftou(pa * s.invTotalWeight) + dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(adr.Min.Y+dy), dstColor) + } + } + } +} + +func (q *Kernel) transform_RGBA_Gray_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.Gray, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) { + // When shrinking, broaden the effective kernel support so that we still + // visit every source pixel. + xHalfWidth, xKernelArgScale := q.Support, 1.0 + if xscale > 1 { + xHalfWidth *= xscale + xKernelArgScale = 1 / xscale + } + yHalfWidth, yKernelArgScale := q.Support, 1.0 + if yscale > 1 { + yHalfWidth *= yscale + yKernelArgScale = 1 / yscale + } + + xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) + yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) + + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] + sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] + if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { + continue + } + + // TODO: adjust the bias so that we can use int(f) instead + // of math.Floor(f) and math.Ceil(f). + sx += float64(bias.X) + sx -= 0.5 + ix := int(math.Floor(sx - xHalfWidth)) + if ix < sr.Min.X { + ix = sr.Min.X + } + jx := int(math.Ceil(sx + xHalfWidth)) + if jx > sr.Max.X { + jx = sr.Max.X + } + + totalXWeight := 0.0 + for kx := ix; kx < jx; kx++ { + xWeight := 0.0 + if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { + xWeight = q.At(t) + } + xWeights[kx-ix] = xWeight + totalXWeight += xWeight + } + for x := range xWeights[:jx-ix] { + xWeights[x] /= totalXWeight + } + + sy += float64(bias.Y) + sy -= 0.5 + iy := int(math.Floor(sy - yHalfWidth)) + if iy < sr.Min.Y { + iy = sr.Min.Y + } + jy := int(math.Ceil(sy + yHalfWidth)) + if jy > sr.Max.Y { + jy = sr.Max.Y + } + + totalYWeight := 0.0 + for ky := iy; ky < jy; ky++ { + yWeight := 0.0 + if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { + yWeight = q.At(t) + } + yWeights[ky-iy] = yWeight + totalYWeight += yWeight + } + for y := range yWeights[:jy-iy] { + yWeights[y] /= totalYWeight + } + + var pr float64 + for ky := iy; ky < jy; ky++ { + if yWeight := yWeights[ky-iy]; yWeight != 0 { + for kx := ix; kx < jx; kx++ { + if w := xWeights[kx-ix] * yWeight; w != 0 { + pi := (ky-src.Rect.Min.Y)*src.Stride + (kx - src.Rect.Min.X) + pru := uint32(src.Pix[pi]) * 0x101 + pr += float64(pru) * w + } + } + } + } + out := uint8(fffftou(pr) >> 8) + dst.Pix[d+0] = out + dst.Pix[d+1] = out + dst.Pix[d+2] = out + dst.Pix[d+3] = 0xff + } + } +} + +func (q *Kernel) transform_RGBA_NRGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) { + // When shrinking, broaden the effective kernel support so that we still + // visit every source pixel. + xHalfWidth, xKernelArgScale := q.Support, 1.0 + if xscale > 1 { + xHalfWidth *= xscale + xKernelArgScale = 1 / xscale + } + yHalfWidth, yKernelArgScale := q.Support, 1.0 + if yscale > 1 { + yHalfWidth *= yscale + yKernelArgScale = 1 / yscale + } + + xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) + yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) + + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] + sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] + if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { + continue + } + + // TODO: adjust the bias so that we can use int(f) instead + // of math.Floor(f) and math.Ceil(f). + sx += float64(bias.X) + sx -= 0.5 + ix := int(math.Floor(sx - xHalfWidth)) + if ix < sr.Min.X { + ix = sr.Min.X + } + jx := int(math.Ceil(sx + xHalfWidth)) + if jx > sr.Max.X { + jx = sr.Max.X + } + + totalXWeight := 0.0 + for kx := ix; kx < jx; kx++ { + xWeight := 0.0 + if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { + xWeight = q.At(t) + } + xWeights[kx-ix] = xWeight + totalXWeight += xWeight + } + for x := range xWeights[:jx-ix] { + xWeights[x] /= totalXWeight + } + + sy += float64(bias.Y) + sy -= 0.5 + iy := int(math.Floor(sy - yHalfWidth)) + if iy < sr.Min.Y { + iy = sr.Min.Y + } + jy := int(math.Ceil(sy + yHalfWidth)) + if jy > sr.Max.Y { + jy = sr.Max.Y + } + + totalYWeight := 0.0 + for ky := iy; ky < jy; ky++ { + yWeight := 0.0 + if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { + yWeight = q.At(t) + } + yWeights[ky-iy] = yWeight + totalYWeight += yWeight + } + for y := range yWeights[:jy-iy] { + yWeights[y] /= totalYWeight + } + + var pr, pg, pb, pa float64 + for ky := iy; ky < jy; ky++ { + if yWeight := yWeights[ky-iy]; yWeight != 0 { + for kx := ix; kx < jx; kx++ { + if w := xWeights[kx-ix] * yWeight; w != 0 { + pi := (ky-src.Rect.Min.Y)*src.Stride + (kx-src.Rect.Min.X)*4 + pau := uint32(src.Pix[pi+3]) * 0x101 + pru := uint32(src.Pix[pi+0]) * pau / 0xff + pgu := uint32(src.Pix[pi+1]) * pau / 0xff + pbu := uint32(src.Pix[pi+2]) * pau / 0xff + pr += float64(pru) * w + pg += float64(pgu) * w + pb += float64(pbu) * w + pa += float64(pau) * w + } + } + } + } + + if pr > pa { + pr = pa + } + if pg > pa { + pg = pa + } + if pb > pa { + pb = pa + } + + pr0 := uint32(fffftou(pr)) + pg0 := uint32(fffftou(pg)) + pb0 := uint32(fffftou(pb)) + pa0 := uint32(fffftou(pa)) + pa1 := (0xffff - uint32(pa0)) * 0x101 + dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr0) >> 8) + dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg0) >> 8) + dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb0) >> 8) + dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa0) >> 8) + } + } +} + +func (q *Kernel) transform_RGBA_NRGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) { + // When shrinking, broaden the effective kernel support so that we still + // visit every source pixel. + xHalfWidth, xKernelArgScale := q.Support, 1.0 + if xscale > 1 { + xHalfWidth *= xscale + xKernelArgScale = 1 / xscale + } + yHalfWidth, yKernelArgScale := q.Support, 1.0 + if yscale > 1 { + yHalfWidth *= yscale + yKernelArgScale = 1 / yscale + } + + xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) + yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) + + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] + sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] + if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { + continue + } + + // TODO: adjust the bias so that we can use int(f) instead + // of math.Floor(f) and math.Ceil(f). + sx += float64(bias.X) + sx -= 0.5 + ix := int(math.Floor(sx - xHalfWidth)) + if ix < sr.Min.X { + ix = sr.Min.X + } + jx := int(math.Ceil(sx + xHalfWidth)) + if jx > sr.Max.X { + jx = sr.Max.X + } + + totalXWeight := 0.0 + for kx := ix; kx < jx; kx++ { + xWeight := 0.0 + if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { + xWeight = q.At(t) + } + xWeights[kx-ix] = xWeight + totalXWeight += xWeight + } + for x := range xWeights[:jx-ix] { + xWeights[x] /= totalXWeight + } + + sy += float64(bias.Y) + sy -= 0.5 + iy := int(math.Floor(sy - yHalfWidth)) + if iy < sr.Min.Y { + iy = sr.Min.Y + } + jy := int(math.Ceil(sy + yHalfWidth)) + if jy > sr.Max.Y { + jy = sr.Max.Y + } + + totalYWeight := 0.0 + for ky := iy; ky < jy; ky++ { + yWeight := 0.0 + if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { + yWeight = q.At(t) + } + yWeights[ky-iy] = yWeight + totalYWeight += yWeight + } + for y := range yWeights[:jy-iy] { + yWeights[y] /= totalYWeight + } + + var pr, pg, pb, pa float64 + for ky := iy; ky < jy; ky++ { + if yWeight := yWeights[ky-iy]; yWeight != 0 { + for kx := ix; kx < jx; kx++ { + if w := xWeights[kx-ix] * yWeight; w != 0 { + pi := (ky-src.Rect.Min.Y)*src.Stride + (kx-src.Rect.Min.X)*4 + pau := uint32(src.Pix[pi+3]) * 0x101 + pru := uint32(src.Pix[pi+0]) * pau / 0xff + pgu := uint32(src.Pix[pi+1]) * pau / 0xff + pbu := uint32(src.Pix[pi+2]) * pau / 0xff + pr += float64(pru) * w + pg += float64(pgu) * w + pb += float64(pbu) * w + pa += float64(pau) * w + } + } + } + } + + if pr > pa { + pr = pa + } + if pg > pa { + pg = pa + } + if pb > pa { + pb = pa + } + + dst.Pix[d+0] = uint8(fffftou(pr) >> 8) + dst.Pix[d+1] = uint8(fffftou(pg) >> 8) + dst.Pix[d+2] = uint8(fffftou(pb) >> 8) + dst.Pix[d+3] = uint8(fffftou(pa) >> 8) + } + } +} + +func (q *Kernel) transform_RGBA_RGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) { + // When shrinking, broaden the effective kernel support so that we still + // visit every source pixel. + xHalfWidth, xKernelArgScale := q.Support, 1.0 + if xscale > 1 { + xHalfWidth *= xscale + xKernelArgScale = 1 / xscale + } + yHalfWidth, yKernelArgScale := q.Support, 1.0 + if yscale > 1 { + yHalfWidth *= yscale + yKernelArgScale = 1 / yscale + } + + xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) + yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) + + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] + sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] + if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { + continue + } + + // TODO: adjust the bias so that we can use int(f) instead + // of math.Floor(f) and math.Ceil(f). + sx += float64(bias.X) + sx -= 0.5 + ix := int(math.Floor(sx - xHalfWidth)) + if ix < sr.Min.X { + ix = sr.Min.X + } + jx := int(math.Ceil(sx + xHalfWidth)) + if jx > sr.Max.X { + jx = sr.Max.X + } + + totalXWeight := 0.0 + for kx := ix; kx < jx; kx++ { + xWeight := 0.0 + if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { + xWeight = q.At(t) + } + xWeights[kx-ix] = xWeight + totalXWeight += xWeight + } + for x := range xWeights[:jx-ix] { + xWeights[x] /= totalXWeight + } + + sy += float64(bias.Y) + sy -= 0.5 + iy := int(math.Floor(sy - yHalfWidth)) + if iy < sr.Min.Y { + iy = sr.Min.Y + } + jy := int(math.Ceil(sy + yHalfWidth)) + if jy > sr.Max.Y { + jy = sr.Max.Y + } + + totalYWeight := 0.0 + for ky := iy; ky < jy; ky++ { + yWeight := 0.0 + if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { + yWeight = q.At(t) + } + yWeights[ky-iy] = yWeight + totalYWeight += yWeight + } + for y := range yWeights[:jy-iy] { + yWeights[y] /= totalYWeight + } + + var pr, pg, pb, pa float64 + for ky := iy; ky < jy; ky++ { + if yWeight := yWeights[ky-iy]; yWeight != 0 { + for kx := ix; kx < jx; kx++ { + if w := xWeights[kx-ix] * yWeight; w != 0 { + pi := (ky-src.Rect.Min.Y)*src.Stride + (kx-src.Rect.Min.X)*4 + pru := uint32(src.Pix[pi+0]) * 0x101 + pgu := uint32(src.Pix[pi+1]) * 0x101 + pbu := uint32(src.Pix[pi+2]) * 0x101 + pau := uint32(src.Pix[pi+3]) * 0x101 + pr += float64(pru) * w + pg += float64(pgu) * w + pb += float64(pbu) * w + pa += float64(pau) * w + } + } + } + } + + if pr > pa { + pr = pa + } + if pg > pa { + pg = pa + } + if pb > pa { + pb = pa + } + + pr0 := uint32(fffftou(pr)) + pg0 := uint32(fffftou(pg)) + pb0 := uint32(fffftou(pb)) + pa0 := uint32(fffftou(pa)) + pa1 := (0xffff - uint32(pa0)) * 0x101 + dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr0) >> 8) + dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg0) >> 8) + dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb0) >> 8) + dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa0) >> 8) + } + } +} + +func (q *Kernel) transform_RGBA_RGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) { + // When shrinking, broaden the effective kernel support so that we still + // visit every source pixel. + xHalfWidth, xKernelArgScale := q.Support, 1.0 + if xscale > 1 { + xHalfWidth *= xscale + xKernelArgScale = 1 / xscale + } + yHalfWidth, yKernelArgScale := q.Support, 1.0 + if yscale > 1 { + yHalfWidth *= yscale + yKernelArgScale = 1 / yscale + } + + xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) + yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) + + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] + sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] + if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { + continue + } + + // TODO: adjust the bias so that we can use int(f) instead + // of math.Floor(f) and math.Ceil(f). + sx += float64(bias.X) + sx -= 0.5 + ix := int(math.Floor(sx - xHalfWidth)) + if ix < sr.Min.X { + ix = sr.Min.X + } + jx := int(math.Ceil(sx + xHalfWidth)) + if jx > sr.Max.X { + jx = sr.Max.X + } + + totalXWeight := 0.0 + for kx := ix; kx < jx; kx++ { + xWeight := 0.0 + if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { + xWeight = q.At(t) + } + xWeights[kx-ix] = xWeight + totalXWeight += xWeight + } + for x := range xWeights[:jx-ix] { + xWeights[x] /= totalXWeight + } + + sy += float64(bias.Y) + sy -= 0.5 + iy := int(math.Floor(sy - yHalfWidth)) + if iy < sr.Min.Y { + iy = sr.Min.Y + } + jy := int(math.Ceil(sy + yHalfWidth)) + if jy > sr.Max.Y { + jy = sr.Max.Y + } + + totalYWeight := 0.0 + for ky := iy; ky < jy; ky++ { + yWeight := 0.0 + if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { + yWeight = q.At(t) + } + yWeights[ky-iy] = yWeight + totalYWeight += yWeight + } + for y := range yWeights[:jy-iy] { + yWeights[y] /= totalYWeight + } + + var pr, pg, pb, pa float64 + for ky := iy; ky < jy; ky++ { + if yWeight := yWeights[ky-iy]; yWeight != 0 { + for kx := ix; kx < jx; kx++ { + if w := xWeights[kx-ix] * yWeight; w != 0 { + pi := (ky-src.Rect.Min.Y)*src.Stride + (kx-src.Rect.Min.X)*4 + pru := uint32(src.Pix[pi+0]) * 0x101 + pgu := uint32(src.Pix[pi+1]) * 0x101 + pbu := uint32(src.Pix[pi+2]) * 0x101 + pau := uint32(src.Pix[pi+3]) * 0x101 + pr += float64(pru) * w + pg += float64(pgu) * w + pb += float64(pbu) * w + pa += float64(pau) * w + } + } + } + } + + if pr > pa { + pr = pa + } + if pg > pa { + pg = pa + } + if pb > pa { + pb = pa + } + + dst.Pix[d+0] = uint8(fffftou(pr) >> 8) + dst.Pix[d+1] = uint8(fffftou(pg) >> 8) + dst.Pix[d+2] = uint8(fffftou(pb) >> 8) + dst.Pix[d+3] = uint8(fffftou(pa) >> 8) + } + } +} + +func (q *Kernel) transform_RGBA_YCbCr444_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) { + // When shrinking, broaden the effective kernel support so that we still + // visit every source pixel. + xHalfWidth, xKernelArgScale := q.Support, 1.0 + if xscale > 1 { + xHalfWidth *= xscale + xKernelArgScale = 1 / xscale + } + yHalfWidth, yKernelArgScale := q.Support, 1.0 + if yscale > 1 { + yHalfWidth *= yscale + yKernelArgScale = 1 / yscale + } + + xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) + yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) + + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] + sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] + if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { + continue + } + + // TODO: adjust the bias so that we can use int(f) instead + // of math.Floor(f) and math.Ceil(f). + sx += float64(bias.X) + sx -= 0.5 + ix := int(math.Floor(sx - xHalfWidth)) + if ix < sr.Min.X { + ix = sr.Min.X + } + jx := int(math.Ceil(sx + xHalfWidth)) + if jx > sr.Max.X { + jx = sr.Max.X + } + + totalXWeight := 0.0 + for kx := ix; kx < jx; kx++ { + xWeight := 0.0 + if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { + xWeight = q.At(t) + } + xWeights[kx-ix] = xWeight + totalXWeight += xWeight + } + for x := range xWeights[:jx-ix] { + xWeights[x] /= totalXWeight + } + + sy += float64(bias.Y) + sy -= 0.5 + iy := int(math.Floor(sy - yHalfWidth)) + if iy < sr.Min.Y { + iy = sr.Min.Y + } + jy := int(math.Ceil(sy + yHalfWidth)) + if jy > sr.Max.Y { + jy = sr.Max.Y + } + + totalYWeight := 0.0 + for ky := iy; ky < jy; ky++ { + yWeight := 0.0 + if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { + yWeight = q.At(t) + } + yWeights[ky-iy] = yWeight + totalYWeight += yWeight + } + for y := range yWeights[:jy-iy] { + yWeights[y] /= totalYWeight + } + + var pr, pg, pb float64 + for ky := iy; ky < jy; ky++ { + if yWeight := yWeights[ky-iy]; yWeight != 0 { + for kx := ix; kx < jx; kx++ { + if w := xWeights[kx-ix] * yWeight; w != 0 { + pi := (ky-src.Rect.Min.Y)*src.YStride + (kx - src.Rect.Min.X) + pj := (ky-src.Rect.Min.Y)*src.CStride + (kx - src.Rect.Min.X) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + pyy1 := int(src.Y[pi]) * 0x10101 + pcb1 := int(src.Cb[pj]) - 128 + pcr1 := int(src.Cr[pj]) - 128 + pru := (pyy1 + 91881*pcr1) >> 8 + pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 + pbu := (pyy1 + 116130*pcb1) >> 8 + if pru < 0 { + pru = 0 + } else if pru > 0xffff { + pru = 0xffff + } + if pgu < 0 { + pgu = 0 + } else if pgu > 0xffff { + pgu = 0xffff + } + if pbu < 0 { + pbu = 0 + } else if pbu > 0xffff { + pbu = 0xffff + } + + pr += float64(pru) * w + pg += float64(pgu) * w + pb += float64(pbu) * w + } + } + } + } + dst.Pix[d+0] = uint8(fffftou(pr) >> 8) + dst.Pix[d+1] = uint8(fffftou(pg) >> 8) + dst.Pix[d+2] = uint8(fffftou(pb) >> 8) + dst.Pix[d+3] = 0xff + } + } +} + +func (q *Kernel) transform_RGBA_YCbCr422_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) { + // When shrinking, broaden the effective kernel support so that we still + // visit every source pixel. + xHalfWidth, xKernelArgScale := q.Support, 1.0 + if xscale > 1 { + xHalfWidth *= xscale + xKernelArgScale = 1 / xscale + } + yHalfWidth, yKernelArgScale := q.Support, 1.0 + if yscale > 1 { + yHalfWidth *= yscale + yKernelArgScale = 1 / yscale + } + + xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) + yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) + + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] + sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] + if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { + continue + } + + // TODO: adjust the bias so that we can use int(f) instead + // of math.Floor(f) and math.Ceil(f). + sx += float64(bias.X) + sx -= 0.5 + ix := int(math.Floor(sx - xHalfWidth)) + if ix < sr.Min.X { + ix = sr.Min.X + } + jx := int(math.Ceil(sx + xHalfWidth)) + if jx > sr.Max.X { + jx = sr.Max.X + } + + totalXWeight := 0.0 + for kx := ix; kx < jx; kx++ { + xWeight := 0.0 + if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { + xWeight = q.At(t) + } + xWeights[kx-ix] = xWeight + totalXWeight += xWeight + } + for x := range xWeights[:jx-ix] { + xWeights[x] /= totalXWeight + } + + sy += float64(bias.Y) + sy -= 0.5 + iy := int(math.Floor(sy - yHalfWidth)) + if iy < sr.Min.Y { + iy = sr.Min.Y + } + jy := int(math.Ceil(sy + yHalfWidth)) + if jy > sr.Max.Y { + jy = sr.Max.Y + } + + totalYWeight := 0.0 + for ky := iy; ky < jy; ky++ { + yWeight := 0.0 + if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { + yWeight = q.At(t) + } + yWeights[ky-iy] = yWeight + totalYWeight += yWeight + } + for y := range yWeights[:jy-iy] { + yWeights[y] /= totalYWeight + } + + var pr, pg, pb float64 + for ky := iy; ky < jy; ky++ { + if yWeight := yWeights[ky-iy]; yWeight != 0 { + for kx := ix; kx < jx; kx++ { + if w := xWeights[kx-ix] * yWeight; w != 0 { + pi := (ky-src.Rect.Min.Y)*src.YStride + (kx - src.Rect.Min.X) + pj := (ky-src.Rect.Min.Y)*src.CStride + ((kx)/2 - src.Rect.Min.X/2) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + pyy1 := int(src.Y[pi]) * 0x10101 + pcb1 := int(src.Cb[pj]) - 128 + pcr1 := int(src.Cr[pj]) - 128 + pru := (pyy1 + 91881*pcr1) >> 8 + pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 + pbu := (pyy1 + 116130*pcb1) >> 8 + if pru < 0 { + pru = 0 + } else if pru > 0xffff { + pru = 0xffff + } + if pgu < 0 { + pgu = 0 + } else if pgu > 0xffff { + pgu = 0xffff + } + if pbu < 0 { + pbu = 0 + } else if pbu > 0xffff { + pbu = 0xffff + } + + pr += float64(pru) * w + pg += float64(pgu) * w + pb += float64(pbu) * w + } + } + } + } + dst.Pix[d+0] = uint8(fffftou(pr) >> 8) + dst.Pix[d+1] = uint8(fffftou(pg) >> 8) + dst.Pix[d+2] = uint8(fffftou(pb) >> 8) + dst.Pix[d+3] = 0xff + } + } +} + +func (q *Kernel) transform_RGBA_YCbCr420_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) { + // When shrinking, broaden the effective kernel support so that we still + // visit every source pixel. + xHalfWidth, xKernelArgScale := q.Support, 1.0 + if xscale > 1 { + xHalfWidth *= xscale + xKernelArgScale = 1 / xscale + } + yHalfWidth, yKernelArgScale := q.Support, 1.0 + if yscale > 1 { + yHalfWidth *= yscale + yKernelArgScale = 1 / yscale + } + + xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) + yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) + + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] + sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] + if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { + continue + } + + // TODO: adjust the bias so that we can use int(f) instead + // of math.Floor(f) and math.Ceil(f). + sx += float64(bias.X) + sx -= 0.5 + ix := int(math.Floor(sx - xHalfWidth)) + if ix < sr.Min.X { + ix = sr.Min.X + } + jx := int(math.Ceil(sx + xHalfWidth)) + if jx > sr.Max.X { + jx = sr.Max.X + } + + totalXWeight := 0.0 + for kx := ix; kx < jx; kx++ { + xWeight := 0.0 + if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { + xWeight = q.At(t) + } + xWeights[kx-ix] = xWeight + totalXWeight += xWeight + } + for x := range xWeights[:jx-ix] { + xWeights[x] /= totalXWeight + } + + sy += float64(bias.Y) + sy -= 0.5 + iy := int(math.Floor(sy - yHalfWidth)) + if iy < sr.Min.Y { + iy = sr.Min.Y + } + jy := int(math.Ceil(sy + yHalfWidth)) + if jy > sr.Max.Y { + jy = sr.Max.Y + } + + totalYWeight := 0.0 + for ky := iy; ky < jy; ky++ { + yWeight := 0.0 + if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { + yWeight = q.At(t) + } + yWeights[ky-iy] = yWeight + totalYWeight += yWeight + } + for y := range yWeights[:jy-iy] { + yWeights[y] /= totalYWeight + } + + var pr, pg, pb float64 + for ky := iy; ky < jy; ky++ { + if yWeight := yWeights[ky-iy]; yWeight != 0 { + for kx := ix; kx < jx; kx++ { + if w := xWeights[kx-ix] * yWeight; w != 0 { + pi := (ky-src.Rect.Min.Y)*src.YStride + (kx - src.Rect.Min.X) + pj := ((ky)/2-src.Rect.Min.Y/2)*src.CStride + ((kx)/2 - src.Rect.Min.X/2) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + pyy1 := int(src.Y[pi]) * 0x10101 + pcb1 := int(src.Cb[pj]) - 128 + pcr1 := int(src.Cr[pj]) - 128 + pru := (pyy1 + 91881*pcr1) >> 8 + pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 + pbu := (pyy1 + 116130*pcb1) >> 8 + if pru < 0 { + pru = 0 + } else if pru > 0xffff { + pru = 0xffff + } + if pgu < 0 { + pgu = 0 + } else if pgu > 0xffff { + pgu = 0xffff + } + if pbu < 0 { + pbu = 0 + } else if pbu > 0xffff { + pbu = 0xffff + } + + pr += float64(pru) * w + pg += float64(pgu) * w + pb += float64(pbu) * w + } + } + } + } + dst.Pix[d+0] = uint8(fffftou(pr) >> 8) + dst.Pix[d+1] = uint8(fffftou(pg) >> 8) + dst.Pix[d+2] = uint8(fffftou(pb) >> 8) + dst.Pix[d+3] = 0xff + } + } +} + +func (q *Kernel) transform_RGBA_YCbCr440_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) { + // When shrinking, broaden the effective kernel support so that we still + // visit every source pixel. + xHalfWidth, xKernelArgScale := q.Support, 1.0 + if xscale > 1 { + xHalfWidth *= xscale + xKernelArgScale = 1 / xscale + } + yHalfWidth, yKernelArgScale := q.Support, 1.0 + if yscale > 1 { + yHalfWidth *= yscale + yKernelArgScale = 1 / yscale + } + + xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) + yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) + + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] + sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] + if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { + continue + } + + // TODO: adjust the bias so that we can use int(f) instead + // of math.Floor(f) and math.Ceil(f). + sx += float64(bias.X) + sx -= 0.5 + ix := int(math.Floor(sx - xHalfWidth)) + if ix < sr.Min.X { + ix = sr.Min.X + } + jx := int(math.Ceil(sx + xHalfWidth)) + if jx > sr.Max.X { + jx = sr.Max.X + } + + totalXWeight := 0.0 + for kx := ix; kx < jx; kx++ { + xWeight := 0.0 + if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { + xWeight = q.At(t) + } + xWeights[kx-ix] = xWeight + totalXWeight += xWeight + } + for x := range xWeights[:jx-ix] { + xWeights[x] /= totalXWeight + } + + sy += float64(bias.Y) + sy -= 0.5 + iy := int(math.Floor(sy - yHalfWidth)) + if iy < sr.Min.Y { + iy = sr.Min.Y + } + jy := int(math.Ceil(sy + yHalfWidth)) + if jy > sr.Max.Y { + jy = sr.Max.Y + } + + totalYWeight := 0.0 + for ky := iy; ky < jy; ky++ { + yWeight := 0.0 + if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { + yWeight = q.At(t) + } + yWeights[ky-iy] = yWeight + totalYWeight += yWeight + } + for y := range yWeights[:jy-iy] { + yWeights[y] /= totalYWeight + } + + var pr, pg, pb float64 + for ky := iy; ky < jy; ky++ { + if yWeight := yWeights[ky-iy]; yWeight != 0 { + for kx := ix; kx < jx; kx++ { + if w := xWeights[kx-ix] * yWeight; w != 0 { + pi := (ky-src.Rect.Min.Y)*src.YStride + (kx - src.Rect.Min.X) + pj := ((ky)/2-src.Rect.Min.Y/2)*src.CStride + (kx - src.Rect.Min.X) + + // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. + pyy1 := int(src.Y[pi]) * 0x10101 + pcb1 := int(src.Cb[pj]) - 128 + pcr1 := int(src.Cr[pj]) - 128 + pru := (pyy1 + 91881*pcr1) >> 8 + pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 + pbu := (pyy1 + 116130*pcb1) >> 8 + if pru < 0 { + pru = 0 + } else if pru > 0xffff { + pru = 0xffff + } + if pgu < 0 { + pgu = 0 + } else if pgu > 0xffff { + pgu = 0xffff + } + if pbu < 0 { + pbu = 0 + } else if pbu > 0xffff { + pbu = 0xffff + } + + pr += float64(pru) * w + pg += float64(pgu) * w + pb += float64(pbu) * w + } + } + } + } + dst.Pix[d+0] = uint8(fffftou(pr) >> 8) + dst.Pix[d+1] = uint8(fffftou(pg) >> 8) + dst.Pix[d+2] = uint8(fffftou(pb) >> 8) + dst.Pix[d+3] = 0xff + } + } +} + +func (q *Kernel) transform_RGBA_Image_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) { + // When shrinking, broaden the effective kernel support so that we still + // visit every source pixel. + xHalfWidth, xKernelArgScale := q.Support, 1.0 + if xscale > 1 { + xHalfWidth *= xscale + xKernelArgScale = 1 / xscale + } + yHalfWidth, yKernelArgScale := q.Support, 1.0 + if yscale > 1 { + yHalfWidth *= yscale + yKernelArgScale = 1 / yscale + } + + xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) + yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) + + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] + sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] + if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { + continue + } + + // TODO: adjust the bias so that we can use int(f) instead + // of math.Floor(f) and math.Ceil(f). + sx += float64(bias.X) + sx -= 0.5 + ix := int(math.Floor(sx - xHalfWidth)) + if ix < sr.Min.X { + ix = sr.Min.X + } + jx := int(math.Ceil(sx + xHalfWidth)) + if jx > sr.Max.X { + jx = sr.Max.X + } + + totalXWeight := 0.0 + for kx := ix; kx < jx; kx++ { + xWeight := 0.0 + if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { + xWeight = q.At(t) + } + xWeights[kx-ix] = xWeight + totalXWeight += xWeight + } + for x := range xWeights[:jx-ix] { + xWeights[x] /= totalXWeight + } + + sy += float64(bias.Y) + sy -= 0.5 + iy := int(math.Floor(sy - yHalfWidth)) + if iy < sr.Min.Y { + iy = sr.Min.Y + } + jy := int(math.Ceil(sy + yHalfWidth)) + if jy > sr.Max.Y { + jy = sr.Max.Y + } + + totalYWeight := 0.0 + for ky := iy; ky < jy; ky++ { + yWeight := 0.0 + if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { + yWeight = q.At(t) + } + yWeights[ky-iy] = yWeight + totalYWeight += yWeight + } + for y := range yWeights[:jy-iy] { + yWeights[y] /= totalYWeight + } + + var pr, pg, pb, pa float64 + for ky := iy; ky < jy; ky++ { + if yWeight := yWeights[ky-iy]; yWeight != 0 { + for kx := ix; kx < jx; kx++ { + if w := xWeights[kx-ix] * yWeight; w != 0 { + pru, pgu, pbu, pau := src.At(kx, ky).RGBA() + pr += float64(pru) * w + pg += float64(pgu) * w + pb += float64(pbu) * w + pa += float64(pau) * w + } + } + } + } + + if pr > pa { + pr = pa + } + if pg > pa { + pg = pa + } + if pb > pa { + pb = pa + } + + pr0 := uint32(fffftou(pr)) + pg0 := uint32(fffftou(pg)) + pb0 := uint32(fffftou(pb)) + pa0 := uint32(fffftou(pa)) + pa1 := (0xffff - uint32(pa0)) * 0x101 + dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr0) >> 8) + dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg0) >> 8) + dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb0) >> 8) + dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa0) >> 8) + } + } +} + +func (q *Kernel) transform_RGBA_Image_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) { + // When shrinking, broaden the effective kernel support so that we still + // visit every source pixel. + xHalfWidth, xKernelArgScale := q.Support, 1.0 + if xscale > 1 { + xHalfWidth *= xscale + xKernelArgScale = 1 / xscale + } + yHalfWidth, yKernelArgScale := q.Support, 1.0 + if yscale > 1 { + yHalfWidth *= yscale + yKernelArgScale = 1 / yscale + } + + xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) + yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) + + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] + sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] + if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { + continue + } + + // TODO: adjust the bias so that we can use int(f) instead + // of math.Floor(f) and math.Ceil(f). + sx += float64(bias.X) + sx -= 0.5 + ix := int(math.Floor(sx - xHalfWidth)) + if ix < sr.Min.X { + ix = sr.Min.X + } + jx := int(math.Ceil(sx + xHalfWidth)) + if jx > sr.Max.X { + jx = sr.Max.X + } + + totalXWeight := 0.0 + for kx := ix; kx < jx; kx++ { + xWeight := 0.0 + if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { + xWeight = q.At(t) + } + xWeights[kx-ix] = xWeight + totalXWeight += xWeight + } + for x := range xWeights[:jx-ix] { + xWeights[x] /= totalXWeight + } + + sy += float64(bias.Y) + sy -= 0.5 + iy := int(math.Floor(sy - yHalfWidth)) + if iy < sr.Min.Y { + iy = sr.Min.Y + } + jy := int(math.Ceil(sy + yHalfWidth)) + if jy > sr.Max.Y { + jy = sr.Max.Y + } + + totalYWeight := 0.0 + for ky := iy; ky < jy; ky++ { + yWeight := 0.0 + if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { + yWeight = q.At(t) + } + yWeights[ky-iy] = yWeight + totalYWeight += yWeight + } + for y := range yWeights[:jy-iy] { + yWeights[y] /= totalYWeight + } + + var pr, pg, pb, pa float64 + for ky := iy; ky < jy; ky++ { + if yWeight := yWeights[ky-iy]; yWeight != 0 { + for kx := ix; kx < jx; kx++ { + if w := xWeights[kx-ix] * yWeight; w != 0 { + pru, pgu, pbu, pau := src.At(kx, ky).RGBA() + pr += float64(pru) * w + pg += float64(pgu) * w + pb += float64(pbu) * w + pa += float64(pau) * w + } + } + } + } + + if pr > pa { + pr = pa + } + if pg > pa { + pg = pa + } + if pb > pa { + pb = pa + } + + dst.Pix[d+0] = uint8(fffftou(pr) >> 8) + dst.Pix[d+1] = uint8(fffftou(pg) >> 8) + dst.Pix[d+2] = uint8(fffftou(pb) >> 8) + dst.Pix[d+3] = uint8(fffftou(pa) >> 8) + } + } +} + +func (q *Kernel) transform_Image_Image_Over(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) { + // When shrinking, broaden the effective kernel support so that we still + // visit every source pixel. + xHalfWidth, xKernelArgScale := q.Support, 1.0 + if xscale > 1 { + xHalfWidth *= xscale + xKernelArgScale = 1 / xscale + } + yHalfWidth, yKernelArgScale := q.Support, 1.0 + if yscale > 1 { + yHalfWidth *= yscale + yKernelArgScale = 1 / yscale + } + + xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) + yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) + + srcMask, smp := opts.SrcMask, opts.SrcMaskP + dstMask, dmp := opts.DstMask, opts.DstMaskP + dstColorRGBA64 := &color.RGBA64{} + dstColor := color.Color(dstColorRGBA64) + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] + sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] + if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { + continue + } + + // TODO: adjust the bias so that we can use int(f) instead + // of math.Floor(f) and math.Ceil(f). + sx += float64(bias.X) + sx -= 0.5 + ix := int(math.Floor(sx - xHalfWidth)) + if ix < sr.Min.X { + ix = sr.Min.X + } + jx := int(math.Ceil(sx + xHalfWidth)) + if jx > sr.Max.X { + jx = sr.Max.X + } + + totalXWeight := 0.0 + for kx := ix; kx < jx; kx++ { + xWeight := 0.0 + if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { + xWeight = q.At(t) + } + xWeights[kx-ix] = xWeight + totalXWeight += xWeight + } + for x := range xWeights[:jx-ix] { + xWeights[x] /= totalXWeight + } + + sy += float64(bias.Y) + sy -= 0.5 + iy := int(math.Floor(sy - yHalfWidth)) + if iy < sr.Min.Y { + iy = sr.Min.Y + } + jy := int(math.Ceil(sy + yHalfWidth)) + if jy > sr.Max.Y { + jy = sr.Max.Y + } + + totalYWeight := 0.0 + for ky := iy; ky < jy; ky++ { + yWeight := 0.0 + if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { + yWeight = q.At(t) + } + yWeights[ky-iy] = yWeight + totalYWeight += yWeight + } + for y := range yWeights[:jy-iy] { + yWeights[y] /= totalYWeight + } + + var pr, pg, pb, pa float64 + for ky := iy; ky < jy; ky++ { + if yWeight := yWeights[ky-iy]; yWeight != 0 { + for kx := ix; kx < jx; kx++ { + if w := xWeights[kx-ix] * yWeight; w != 0 { + pru, pgu, pbu, pau := src.At(kx, ky).RGBA() + if srcMask != nil { + _, _, _, ma := srcMask.At(smp.X+kx, smp.Y+ky).RGBA() + pru = pru * ma / 0xffff + pgu = pgu * ma / 0xffff + pbu = pbu * ma / 0xffff + pau = pau * ma / 0xffff + } + pr += float64(pru) * w + pg += float64(pgu) * w + pb += float64(pbu) * w + pa += float64(pau) * w + } + } + } + } + + if pr > pa { + pr = pa + } + if pg > pa { + pg = pa + } + if pb > pa { + pb = pa + } + + qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA() + pr0 := uint32(fffftou(pr)) + pg0 := uint32(fffftou(pg)) + pb0 := uint32(fffftou(pb)) + pa0 := uint32(fffftou(pa)) + if dstMask != nil { + _, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA() + pr0 = pr0 * ma / 0xffff + pg0 = pg0 * ma / 0xffff + pb0 = pb0 * ma / 0xffff + pa0 = pa0 * ma / 0xffff + } + pa1 := 0xffff - pa0 + dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr0) + dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg0) + dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb0) + dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa0) + dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor) + } + } +} + +func (q *Kernel) transform_Image_Image_Src(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) { + // When shrinking, broaden the effective kernel support so that we still + // visit every source pixel. + xHalfWidth, xKernelArgScale := q.Support, 1.0 + if xscale > 1 { + xHalfWidth *= xscale + xKernelArgScale = 1 / xscale + } + yHalfWidth, yKernelArgScale := q.Support, 1.0 + if yscale > 1 { + yHalfWidth *= yscale + yKernelArgScale = 1 / yscale + } + + xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) + yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) + + srcMask, smp := opts.SrcMask, opts.SrcMaskP + dstMask, dmp := opts.DstMask, opts.DstMaskP + dstColorRGBA64 := &color.RGBA64{} + dstColor := color.Color(dstColorRGBA64) + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] + sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] + if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { + continue + } + + // TODO: adjust the bias so that we can use int(f) instead + // of math.Floor(f) and math.Ceil(f). + sx += float64(bias.X) + sx -= 0.5 + ix := int(math.Floor(sx - xHalfWidth)) + if ix < sr.Min.X { + ix = sr.Min.X + } + jx := int(math.Ceil(sx + xHalfWidth)) + if jx > sr.Max.X { + jx = sr.Max.X + } + + totalXWeight := 0.0 + for kx := ix; kx < jx; kx++ { + xWeight := 0.0 + if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { + xWeight = q.At(t) + } + xWeights[kx-ix] = xWeight + totalXWeight += xWeight + } + for x := range xWeights[:jx-ix] { + xWeights[x] /= totalXWeight + } + + sy += float64(bias.Y) + sy -= 0.5 + iy := int(math.Floor(sy - yHalfWidth)) + if iy < sr.Min.Y { + iy = sr.Min.Y + } + jy := int(math.Ceil(sy + yHalfWidth)) + if jy > sr.Max.Y { + jy = sr.Max.Y + } + + totalYWeight := 0.0 + for ky := iy; ky < jy; ky++ { + yWeight := 0.0 + if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { + yWeight = q.At(t) + } + yWeights[ky-iy] = yWeight + totalYWeight += yWeight + } + for y := range yWeights[:jy-iy] { + yWeights[y] /= totalYWeight + } + + var pr, pg, pb, pa float64 + for ky := iy; ky < jy; ky++ { + if yWeight := yWeights[ky-iy]; yWeight != 0 { + for kx := ix; kx < jx; kx++ { + if w := xWeights[kx-ix] * yWeight; w != 0 { + pru, pgu, pbu, pau := src.At(kx, ky).RGBA() + if srcMask != nil { + _, _, _, ma := srcMask.At(smp.X+kx, smp.Y+ky).RGBA() + pru = pru * ma / 0xffff + pgu = pgu * ma / 0xffff + pbu = pbu * ma / 0xffff + pau = pau * ma / 0xffff + } + pr += float64(pru) * w + pg += float64(pgu) * w + pb += float64(pbu) * w + pa += float64(pau) * w + } + } + } + } + + if pr > pa { + pr = pa + } + if pg > pa { + pg = pa + } + if pb > pa { + pb = pa + } + + if dstMask != nil { + qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA() + _, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA() + pr := uint32(fffftou(pr)) * ma / 0xffff + pg := uint32(fffftou(pg)) * ma / 0xffff + pb := uint32(fffftou(pb)) * ma / 0xffff + pa := uint32(fffftou(pa)) * ma / 0xffff + pa1 := 0xffff - ma + dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr) + dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg) + dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb) + dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa) + dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor) + } else { + dstColorRGBA64.R = fffftou(pr) + dstColorRGBA64.G = fffftou(pg) + dstColorRGBA64.B = fffftou(pb) + dstColorRGBA64.A = fffftou(pa) + dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor) + } + } + } +} diff --git a/vendor/golang.org/x/image/draw/scale.go b/vendor/golang.org/x/image/draw/scale.go new file mode 100644 index 0000000..98ab404 --- /dev/null +++ b/vendor/golang.org/x/image/draw/scale.go @@ -0,0 +1,527 @@ +// Copyright 2015 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +//go:generate go run gen.go + +package draw + +import ( + "image" + "image/color" + "math" + "sync" + + "golang.org/x/image/math/f64" +) + +// Copy copies the part of the source image defined by src and sr and writes +// the result of a Porter-Duff composition to the part of the destination image +// defined by dst and the translation of sr so that sr.Min translates to dp. +func Copy(dst Image, dp image.Point, src image.Image, sr image.Rectangle, op Op, opts *Options) { + var o Options + if opts != nil { + o = *opts + } + dr := sr.Add(dp.Sub(sr.Min)) + if o.DstMask == nil { + DrawMask(dst, dr, src, sr.Min, o.SrcMask, o.SrcMaskP.Add(sr.Min), op) + } else { + NearestNeighbor.Scale(dst, dr, src, sr, op, opts) + } +} + +// Scaler scales the part of the source image defined by src and sr and writes +// the result of a Porter-Duff composition to the part of the destination image +// defined by dst and dr. +// +// A Scaler is safe to use concurrently. +type Scaler interface { + Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, op Op, opts *Options) +} + +// Transformer transforms the part of the source image defined by src and sr +// and writes the result of a Porter-Duff composition to the part of the +// destination image defined by dst and the affine transform m applied to sr. +// +// For example, if m is the matrix +// +// m00 m01 m02 +// m10 m11 m12 +// +// then the src-space point (sx, sy) maps to the dst-space point +// (m00*sx + m01*sy + m02, m10*sx + m11*sy + m12). +// +// A Transformer is safe to use concurrently. +type Transformer interface { + Transform(dst Image, m f64.Aff3, src image.Image, sr image.Rectangle, op Op, opts *Options) +} + +// Options are optional parameters to Copy, Scale and Transform. +// +// A nil *Options means to use the default (zero) values of each field. +type Options struct { + // Masks limit what parts of the dst image are drawn to and what parts of + // the src image are drawn from. + // + // A dst or src mask image having a zero alpha (transparent) pixel value in + // the respective coordinate space means that that dst pixel is entirely + // unaffected or that src pixel is considered transparent black. A full + // alpha (opaque) value means that the dst pixel is maximally affected or + // the src pixel contributes maximally. The default values, nil, are + // equivalent to fully opaque, infinitely large mask images. + // + // The DstMask is otherwise known as a clip mask, and its pixels map 1:1 to + // the dst image's pixels. DstMaskP in DstMask space corresponds to + // image.Point{X:0, Y:0} in dst space. For example, when limiting + // repainting to a 'dirty rectangle', use that image.Rectangle and a zero + // image.Point as the DstMask and DstMaskP. + // + // The SrcMask's pixels map 1:1 to the src image's pixels. SrcMaskP in + // SrcMask space corresponds to image.Point{X:0, Y:0} in src space. For + // example, when drawing font glyphs in a uniform color, use an + // *image.Uniform as the src, and use the glyph atlas image and the + // per-glyph offset as SrcMask and SrcMaskP: + // Copy(dst, dp, image.NewUniform(color), image.Rect(0, 0, glyphWidth, glyphHeight), &Options{ + // SrcMask: glyphAtlas, + // SrcMaskP: glyphOffset, + // }) + DstMask image.Image + DstMaskP image.Point + SrcMask image.Image + SrcMaskP image.Point + + // TODO: a smooth vs sharp edges option, for arbitrary rotations? +} + +// Interpolator is an interpolation algorithm, when dst and src pixels don't +// have a 1:1 correspondence. +// +// Of the interpolators provided by this package: +// - NearestNeighbor is fast but usually looks worst. +// - CatmullRom is slow but usually looks best. +// - ApproxBiLinear has reasonable speed and quality. +// +// The time taken depends on the size of dr. For kernel interpolators, the +// speed also depends on the size of sr, and so are often slower than +// non-kernel interpolators, especially when scaling down. +type Interpolator interface { + Scaler + Transformer +} + +// Kernel is an interpolator that blends source pixels weighted by a symmetric +// kernel function. +type Kernel struct { + // Support is the kernel support and must be >= 0. At(t) is assumed to be + // zero when t >= Support. + Support float64 + // At is the kernel function. It will only be called with t in the + // range [0, Support). + At func(t float64) float64 +} + +// Scale implements the Scaler interface. +func (q *Kernel) Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, op Op, opts *Options) { + q.newScaler(dr.Dx(), dr.Dy(), sr.Dx(), sr.Dy(), false).Scale(dst, dr, src, sr, op, opts) +} + +// NewScaler returns a Scaler that is optimized for scaling multiple times with +// the same fixed destination and source width and height. +func (q *Kernel) NewScaler(dw, dh, sw, sh int) Scaler { + return q.newScaler(dw, dh, sw, sh, true) +} + +func (q *Kernel) newScaler(dw, dh, sw, sh int, usePool bool) Scaler { + z := &kernelScaler{ + kernel: q, + dw: int32(dw), + dh: int32(dh), + sw: int32(sw), + sh: int32(sh), + horizontal: newDistrib(q, int32(dw), int32(sw)), + vertical: newDistrib(q, int32(dh), int32(sh)), + } + if usePool { + z.pool.New = func() interface{} { + tmp := z.makeTmpBuf() + return &tmp + } + } + return z +} + +var ( + // NearestNeighbor is the nearest neighbor interpolator. It is very fast, + // but usually gives very low quality results. When scaling up, the result + // will look 'blocky'. + NearestNeighbor = Interpolator(nnInterpolator{}) + + // ApproxBiLinear is a mixture of the nearest neighbor and bi-linear + // interpolators. It is fast, but usually gives medium quality results. + // + // It implements bi-linear interpolation when upscaling and a bi-linear + // blend of the 4 nearest neighbor pixels when downscaling. This yields + // nicer quality than nearest neighbor interpolation when upscaling, but + // the time taken is independent of the number of source pixels, unlike the + // bi-linear interpolator. When downscaling a large image, the performance + // difference can be significant. + ApproxBiLinear = Interpolator(ablInterpolator{}) + + // BiLinear is the tent kernel. It is slow, but usually gives high quality + // results. + BiLinear = &Kernel{1, func(t float64) float64 { + return 1 - t + }} + + // CatmullRom is the Catmull-Rom kernel. It is very slow, but usually gives + // very high quality results. + // + // It is an instance of the more general cubic BC-spline kernel with parameters + // B=0 and C=0.5. See Mitchell and Netravali, "Reconstruction Filters in + // Computer Graphics", Computer Graphics, Vol. 22, No. 4, pp. 221-228. + CatmullRom = &Kernel{2, func(t float64) float64 { + if t < 1 { + return (1.5*t-2.5)*t*t + 1 + } + return ((-0.5*t+2.5)*t-4)*t + 2 + }} + + // TODO: a Kaiser-Bessel kernel? +) + +type nnInterpolator struct{} + +type ablInterpolator struct{} + +type kernelScaler struct { + kernel *Kernel + dw, dh, sw, sh int32 + horizontal, vertical distrib + pool sync.Pool +} + +func (z *kernelScaler) makeTmpBuf() [][4]float64 { + return make([][4]float64, z.dw*z.sh) +} + +// source is a range of contribs, their inverse total weight, and that ITW +// divided by 0xffff. +type source struct { + i, j int32 + invTotalWeight float64 + invTotalWeightFFFF float64 +} + +// contrib is the weight of a column or row. +type contrib struct { + coord int32 + weight float64 +} + +// distrib measures how source pixels are distributed over destination pixels. +type distrib struct { + // sources are what contribs each column or row in the source image owns, + // and the total weight of those contribs. + sources []source + // contribs are the contributions indexed by sources[s].i and sources[s].j. + contribs []contrib +} + +// newDistrib returns a distrib that distributes sw source columns (or rows) +// over dw destination columns (or rows). +func newDistrib(q *Kernel, dw, sw int32) distrib { + scale := float64(sw) / float64(dw) + halfWidth, kernelArgScale := q.Support, 1.0 + // When shrinking, broaden the effective kernel support so that we still + // visit every source pixel. + if scale > 1 { + halfWidth *= scale + kernelArgScale = 1 / scale + } + + // Make the sources slice, one source for each column or row, and temporarily + // appropriate its elements' fields so that invTotalWeight is the scaled + // coordinate of the source column or row, and i and j are the lower and + // upper bounds of the range of destination columns or rows affected by the + // source column or row. + n, sources := int32(0), make([]source, dw) + for x := range sources { + center := (float64(x)+0.5)*scale - 0.5 + i := int32(math.Floor(center - halfWidth)) + if i < 0 { + i = 0 + } + j := int32(math.Ceil(center + halfWidth)) + if j > sw { + j = sw + if j < i { + j = i + } + } + sources[x] = source{i: i, j: j, invTotalWeight: center} + n += j - i + } + + contribs := make([]contrib, 0, n) + for k, b := range sources { + totalWeight := 0.0 + l := int32(len(contribs)) + for coord := b.i; coord < b.j; coord++ { + t := abs((b.invTotalWeight - float64(coord)) * kernelArgScale) + if t >= q.Support { + continue + } + weight := q.At(t) + if weight == 0 { + continue + } + totalWeight += weight + contribs = append(contribs, contrib{coord, weight}) + } + totalWeight = 1 / totalWeight + sources[k] = source{ + i: l, + j: int32(len(contribs)), + invTotalWeight: totalWeight, + invTotalWeightFFFF: totalWeight / 0xffff, + } + } + + return distrib{sources, contribs} +} + +// abs is like math.Abs, but it doesn't care about negative zero, infinities or +// NaNs. +func abs(f float64) float64 { + if f < 0 { + f = -f + } + return f +} + +// ftou converts the range [0.0, 1.0] to [0, 0xffff]. +func ftou(f float64) uint16 { + i := int32(0xffff*f + 0.5) + if i > 0xffff { + return 0xffff + } + if i > 0 { + return uint16(i) + } + return 0 +} + +// fffftou converts the range [0.0, 65535.0] to [0, 0xffff]. +func fffftou(f float64) uint16 { + i := int32(f + 0.5) + if i > 0xffff { + return 0xffff + } + if i > 0 { + return uint16(i) + } + return 0 +} + +// invert returns the inverse of m. +// +// TODO: move this into the f64 package, once we work out the convention for +// matrix methods in that package: do they modify the receiver, take a dst +// pointer argument, or return a new value? +func invert(m *f64.Aff3) f64.Aff3 { + m00 := +m[3*1+1] + m01 := -m[3*0+1] + m02 := +m[3*1+2]*m[3*0+1] - m[3*1+1]*m[3*0+2] + m10 := -m[3*1+0] + m11 := +m[3*0+0] + m12 := +m[3*1+0]*m[3*0+2] - m[3*1+2]*m[3*0+0] + + det := m00*m11 - m10*m01 + + return f64.Aff3{ + m00 / det, + m01 / det, + m02 / det, + m10 / det, + m11 / det, + m12 / det, + } +} + +func matMul(p, q *f64.Aff3) f64.Aff3 { + return f64.Aff3{ + p[3*0+0]*q[3*0+0] + p[3*0+1]*q[3*1+0], + p[3*0+0]*q[3*0+1] + p[3*0+1]*q[3*1+1], + p[3*0+0]*q[3*0+2] + p[3*0+1]*q[3*1+2] + p[3*0+2], + p[3*1+0]*q[3*0+0] + p[3*1+1]*q[3*1+0], + p[3*1+0]*q[3*0+1] + p[3*1+1]*q[3*1+1], + p[3*1+0]*q[3*0+2] + p[3*1+1]*q[3*1+2] + p[3*1+2], + } +} + +// transformRect returns a rectangle dr that contains sr transformed by s2d. +func transformRect(s2d *f64.Aff3, sr *image.Rectangle) (dr image.Rectangle) { + ps := [...]image.Point{ + {sr.Min.X, sr.Min.Y}, + {sr.Max.X, sr.Min.Y}, + {sr.Min.X, sr.Max.Y}, + {sr.Max.X, sr.Max.Y}, + } + for i, p := range ps { + sxf := float64(p.X) + syf := float64(p.Y) + dx := int(math.Floor(s2d[0]*sxf + s2d[1]*syf + s2d[2])) + dy := int(math.Floor(s2d[3]*sxf + s2d[4]*syf + s2d[5])) + + // The +1 adjustments below are because an image.Rectangle is inclusive + // on the low end but exclusive on the high end. + + if i == 0 { + dr = image.Rectangle{ + Min: image.Point{dx + 0, dy + 0}, + Max: image.Point{dx + 1, dy + 1}, + } + continue + } + + if dr.Min.X > dx { + dr.Min.X = dx + } + dx++ + if dr.Max.X < dx { + dr.Max.X = dx + } + + if dr.Min.Y > dy { + dr.Min.Y = dy + } + dy++ + if dr.Max.Y < dy { + dr.Max.Y = dy + } + } + return dr +} + +func clipAffectedDestRect(adr image.Rectangle, dstMask image.Image, dstMaskP image.Point) (image.Rectangle, image.Image) { + if dstMask == nil { + return adr, nil + } + // TODO: enable this fast path once Go 1.5 is released, where an + // image.Rectangle implements image.Image. + // if r, ok := dstMask.(image.Rectangle); ok { + // return adr.Intersect(r.Sub(dstMaskP)), nil + // } + // TODO: clip to dstMask.Bounds() if the color model implies that out-of-bounds means 0 alpha? + return adr, dstMask +} + +func transform_Uniform(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.Uniform, sr image.Rectangle, bias image.Point, op Op) { + switch op { + case Over: + switch dst := dst.(type) { + case *image.RGBA: + pr, pg, pb, pa := src.C.RGBA() + pa1 := (0xffff - pa) * 0x101 + + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := dst.PixOffset(dr.Min.X+adr.Min.X, dr.Min.Y+int(dy)) + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X + sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y + if !(image.Point{sx0, sy0}).In(sr) { + continue + } + dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8) + dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8) + dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8) + dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8) + } + } + + default: + pr, pg, pb, pa := src.C.RGBA() + pa1 := 0xffff - pa + dstColorRGBA64 := &color.RGBA64{} + dstColor := color.Color(dstColorRGBA64) + + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X + sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y + if !(image.Point{sx0, sy0}).In(sr) { + continue + } + qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA() + dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr) + dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg) + dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb) + dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa) + dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor) + } + } + } + + case Src: + switch dst := dst.(type) { + case *image.RGBA: + pr, pg, pb, pa := src.C.RGBA() + pr8 := uint8(pr >> 8) + pg8 := uint8(pg >> 8) + pb8 := uint8(pb >> 8) + pa8 := uint8(pa >> 8) + + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + d := dst.PixOffset(dr.Min.X+adr.Min.X, dr.Min.Y+int(dy)) + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X + sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y + if !(image.Point{sx0, sy0}).In(sr) { + continue + } + dst.Pix[d+0] = pr8 + dst.Pix[d+1] = pg8 + dst.Pix[d+2] = pb8 + dst.Pix[d+3] = pa8 + } + } + + default: + pr, pg, pb, pa := src.C.RGBA() + dstColorRGBA64 := &color.RGBA64{ + uint16(pr), + uint16(pg), + uint16(pb), + uint16(pa), + } + dstColor := color.Color(dstColorRGBA64) + + for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { + dyf := float64(dr.Min.Y+int(dy)) + 0.5 + for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { + dxf := float64(dr.Min.X+int(dx)) + 0.5 + sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X + sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y + if !(image.Point{sx0, sy0}).In(sr) { + continue + } + dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor) + } + } + } + } +} + +func opaque(m image.Image) bool { + o, ok := m.(interface { + Opaque() bool + }) + return ok && o.Opaque() +} diff --git a/vendor/golang.org/x/image/math/f64/f64.go b/vendor/golang.org/x/image/math/f64/f64.go new file mode 100644 index 0000000..a1f7fc0 --- /dev/null +++ b/vendor/golang.org/x/image/math/f64/f64.go @@ -0,0 +1,37 @@ +// Copyright 2015 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package f64 implements float64 vector and matrix types. +package f64 // import "golang.org/x/image/math/f64" + +// Vec2 is a 2-element vector. +type Vec2 [2]float64 + +// Vec3 is a 3-element vector. +type Vec3 [3]float64 + +// Vec4 is a 4-element vector. +type Vec4 [4]float64 + +// Mat3 is a 3x3 matrix in row major order. +// +// m[3*r + c] is the element in the r'th row and c'th column. +type Mat3 [9]float64 + +// Mat4 is a 4x4 matrix in row major order. +// +// m[4*r + c] is the element in the r'th row and c'th column. +type Mat4 [16]float64 + +// Aff3 is a 3x3 affine transformation matrix in row major order, where the +// bottom row is implicitly [0 0 1]. +// +// m[3*r + c] is the element in the r'th row and c'th column. +type Aff3 [6]float64 + +// Aff4 is a 4x4 affine transformation matrix in row major order, where the +// bottom row is implicitly [0 0 0 1]. +// +// m[4*r + c] is the element in the r'th row and c'th column. +type Aff4 [12]float64 diff --git a/vendor/vendor.json b/vendor/vendor.json index 26ac6ce..9122f3c 100644 --- a/vendor/vendor.json +++ b/vendor/vendor.json @@ -346,6 +346,18 @@ "revision": "12b6a0f7b3e676d459a9480e75df7efe576cfcb2", "revisionTime": "2017-09-08T20:30:58Z" }, + { + "checksumSHA1": "5Z44bktwBk/azl6X7I/U14GaAes=", + "path": "github.com/muesli/smartcrop", + "revision": "fe851226066d6f54f7f6ed9c0fbec82f11149618", + "revisionTime": "2017-09-02T21:15:18Z" + }, + { + "checksumSHA1": "r5eQHkttko6kxroDEENXbmXKrSs=", + "path": "github.com/nfnt/resize", + "revision": "891127d8d1b52734debe1b3c3d7e747502b6c366", + "revisionTime": "2016-07-24T20:39:20Z" + }, { "checksumSHA1": "GfnXm54E98jxQJMXPZz0LbPVaRc=", "path": "github.com/peterbourgon/diskv", @@ -376,6 +388,18 @@ "revision": "426cfd8eeb6e08ab1932954e09e3c2cb2bc6e36d", "revisionTime": "2017-05-14T06:33:48Z" }, + { + "checksumSHA1": "WZqFyWo6r8KZodsU0doRvel37F0=", + "path": "golang.org/x/image/draw", + "revision": "e20db36d77bd0cb36cea8fe49d5c37d82d21591f", + "revisionTime": "2017-09-04T00:25:37Z" + }, + { + "checksumSHA1": "o7VkCGBiKM5HXzVzrIci1YDlpvc=", + "path": "golang.org/x/image/math/f64", + "revision": "e20db36d77bd0cb36cea8fe49d5c37d82d21591f", + "revisionTime": "2017-09-04T00:25:37Z" + }, { "checksumSHA1": "zdekzNuFGSoxAZ8cURGsrhBObZs=", "path": "golang.org/x/image/riff",