0
Fork 0
mirror of https://codeberg.org/forgejo/forgejo.git synced 2025-01-01 04:13:59 -05:00
forgejo/vendor/github.com/andybalholm/brotli/compress_fragment.go
PhilippHomann 684b7a999f
Dump: add output format tar and output to stdout (#10376)
* Dump: Use mholt/archive/v3 to support tar including many compressions

Signed-off-by: Philipp Homann <homann.philipp@googlemail.com>

* Dump: Allow dump output to stdout

Signed-off-by: Philipp Homann <homann.philipp@googlemail.com>

* Dump: Fixed bug present since #6677 where SessionConfig.Provider is never "file"

Signed-off-by: Philipp Homann <homann.philipp@googlemail.com>

* Dump: never pack RepoRootPath, LFS.ContentPath and LogRootPath when they are below AppDataPath

Signed-off-by: Philipp Homann <homann.philipp@googlemail.com>

* Dump: also dump LFS (fixes #10058)

Signed-off-by: Philipp Homann <homann.philipp@googlemail.com>

* Dump: never dump CustomPath if CustomPath is a subdir of or equal to AppDataPath (fixes #10365)

Signed-off-by: Philipp Homann <homann.philipp@googlemail.com>

* Use log.Info instead of fmt.Fprintf

Signed-off-by: Philipp Homann <homann.philipp@googlemail.com>

* import ordering

* make fmt

Co-authored-by: zeripath <art27@cantab.net>
Co-authored-by: techknowlogick <techknowlogick@gitea.io>
Co-authored-by: Matti R <matti@mdranta.net>
2020-06-05 16:47:39 -04:00

840 lines
26 KiB
Go

package brotli
import "encoding/binary"
/* Copyright 2015 Google Inc. All Rights Reserved.
Distributed under MIT license.
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/
/* Function for fast encoding of an input fragment, independently from the input
history. This function uses one-pass processing: when we find a backward
match, we immediately emit the corresponding command and literal codes to
the bit stream.
Adapted from the CompressFragment() function in
https://github.com/google/snappy/blob/master/snappy.cc */
const maxDistance_compress_fragment = 262128
func hash5(p []byte, shift uint) uint32 {
var h uint64 = (binary.LittleEndian.Uint64(p) << 24) * uint64(kHashMul32)
return uint32(h >> shift)
}
func hashBytesAtOffset5(v uint64, offset int, shift uint) uint32 {
assert(offset >= 0)
assert(offset <= 3)
{
var h uint64 = ((v >> uint(8*offset)) << 24) * uint64(kHashMul32)
return uint32(h >> shift)
}
}
func isMatch5(p1 []byte, p2 []byte) bool {
var i int
for i = 0; i < 5; i++ {
if p1[i] != p2[i] {
return false
}
}
return true
}
/* Builds a literal prefix code into "depths" and "bits" based on the statistics
of the "input" string and stores it into the bit stream.
Note that the prefix code here is built from the pre-LZ77 input, therefore
we can only approximate the statistics of the actual literal stream.
Moreover, for long inputs we build a histogram from a sample of the input
and thus have to assign a non-zero depth for each literal.
Returns estimated compression ratio millibytes/char for encoding given input
with generated code. */
func buildAndStoreLiteralPrefixCode(input []byte, input_size uint, depths []byte, bits []uint16, storage_ix *uint, storage []byte) uint {
var histogram = [256]uint32{0}
var histogram_total uint
var i uint
if input_size < 1<<15 {
for i = 0; i < input_size; i++ {
histogram[input[i]]++
}
histogram_total = input_size
for i = 0; i < 256; i++ {
/* We weigh the first 11 samples with weight 3 to account for the
balancing effect of the LZ77 phase on the histogram. */
var adjust uint32 = 2 * brotli_min_uint32_t(histogram[i], 11)
histogram[i] += adjust
histogram_total += uint(adjust)
}
} else {
const kSampleRate uint = 29
for i = 0; i < input_size; i += kSampleRate {
histogram[input[i]]++
}
histogram_total = (input_size + kSampleRate - 1) / kSampleRate
for i = 0; i < 256; i++ {
/* We add 1 to each population count to avoid 0 bit depths (since this is
only a sample and we don't know if the symbol appears or not), and we
weigh the first 11 samples with weight 3 to account for the balancing
effect of the LZ77 phase on the histogram (more frequent symbols are
more likely to be in backward references instead as literals). */
var adjust uint32 = 1 + 2*brotli_min_uint32_t(histogram[i], 11)
histogram[i] += adjust
histogram_total += uint(adjust)
}
}
buildAndStoreHuffmanTreeFast(histogram[:], histogram_total, /* max_bits = */
8, depths, bits, storage_ix, storage)
{
var literal_ratio uint = 0
for i = 0; i < 256; i++ {
if histogram[i] != 0 {
literal_ratio += uint(histogram[i] * uint32(depths[i]))
}
}
/* Estimated encoding ratio, millibytes per symbol. */
return (literal_ratio * 125) / histogram_total
}
}
/* Builds a command and distance prefix code (each 64 symbols) into "depth" and
"bits" based on "histogram" and stores it into the bit stream. */
func buildAndStoreCommandPrefixCode1(histogram []uint32, depth []byte, bits []uint16, storage_ix *uint, storage []byte) {
var tree [129]huffmanTree
var cmd_depth = [numCommandSymbols]byte{0}
/* Tree size for building a tree over 64 symbols is 2 * 64 + 1. */
var cmd_bits [64]uint16
createHuffmanTree(histogram, 64, 15, tree[:], depth)
createHuffmanTree(histogram[64:], 64, 14, tree[:], depth[64:])
/* We have to jump through a few hoops here in order to compute
the command bits because the symbols are in a different order than in
the full alphabet. This looks complicated, but having the symbols
in this order in the command bits saves a few branches in the Emit*
functions. */
copy(cmd_depth[:], depth[:24])
copy(cmd_depth[24:][:], depth[40:][:8])
copy(cmd_depth[32:][:], depth[24:][:8])
copy(cmd_depth[40:][:], depth[48:][:8])
copy(cmd_depth[48:][:], depth[32:][:8])
copy(cmd_depth[56:][:], depth[56:][:8])
convertBitDepthsToSymbols(cmd_depth[:], 64, cmd_bits[:])
copy(bits, cmd_bits[:24])
copy(bits[24:], cmd_bits[32:][:8])
copy(bits[32:], cmd_bits[48:][:8])
copy(bits[40:], cmd_bits[24:][:8])
copy(bits[48:], cmd_bits[40:][:8])
copy(bits[56:], cmd_bits[56:][:8])
convertBitDepthsToSymbols(depth[64:], 64, bits[64:])
{
/* Create the bit length array for the full command alphabet. */
var i uint
for i := 0; i < int(64); i++ {
cmd_depth[i] = 0
} /* only 64 first values were used */
copy(cmd_depth[:], depth[:8])
copy(cmd_depth[64:][:], depth[8:][:8])
copy(cmd_depth[128:][:], depth[16:][:8])
copy(cmd_depth[192:][:], depth[24:][:8])
copy(cmd_depth[384:][:], depth[32:][:8])
for i = 0; i < 8; i++ {
cmd_depth[128+8*i] = depth[40+i]
cmd_depth[256+8*i] = depth[48+i]
cmd_depth[448+8*i] = depth[56+i]
}
storeHuffmanTree(cmd_depth[:], numCommandSymbols, tree[:], storage_ix, storage)
}
storeHuffmanTree(depth[64:], 64, tree[:], storage_ix, storage)
}
/* REQUIRES: insertlen < 6210 */
func emitInsertLen1(insertlen uint, depth []byte, bits []uint16, histo []uint32, storage_ix *uint, storage []byte) {
if insertlen < 6 {
var code uint = insertlen + 40
writeBits(uint(depth[code]), uint64(bits[code]), storage_ix, storage)
histo[code]++
} else if insertlen < 130 {
var tail uint = insertlen - 2
var nbits uint32 = log2FloorNonZero(tail) - 1
var prefix uint = tail >> nbits
var inscode uint = uint((nbits << 1) + uint32(prefix) + 42)
writeBits(uint(depth[inscode]), uint64(bits[inscode]), storage_ix, storage)
writeBits(uint(nbits), uint64(tail)-(uint64(prefix)<<nbits), storage_ix, storage)
histo[inscode]++
} else if insertlen < 2114 {
var tail uint = insertlen - 66
var nbits uint32 = log2FloorNonZero(tail)
var code uint = uint(nbits + 50)
writeBits(uint(depth[code]), uint64(bits[code]), storage_ix, storage)
writeBits(uint(nbits), uint64(tail)-(uint64(uint(1))<<nbits), storage_ix, storage)
histo[code]++
} else {
writeBits(uint(depth[61]), uint64(bits[61]), storage_ix, storage)
writeBits(12, uint64(insertlen)-2114, storage_ix, storage)
histo[61]++
}
}
func emitLongInsertLen(insertlen uint, depth []byte, bits []uint16, histo []uint32, storage_ix *uint, storage []byte) {
if insertlen < 22594 {
writeBits(uint(depth[62]), uint64(bits[62]), storage_ix, storage)
writeBits(14, uint64(insertlen)-6210, storage_ix, storage)
histo[62]++
} else {
writeBits(uint(depth[63]), uint64(bits[63]), storage_ix, storage)
writeBits(24, uint64(insertlen)-22594, storage_ix, storage)
histo[63]++
}
}
func emitCopyLen1(copylen uint, depth []byte, bits []uint16, histo []uint32, storage_ix *uint, storage []byte) {
if copylen < 10 {
writeBits(uint(depth[copylen+14]), uint64(bits[copylen+14]), storage_ix, storage)
histo[copylen+14]++
} else if copylen < 134 {
var tail uint = copylen - 6
var nbits uint32 = log2FloorNonZero(tail) - 1
var prefix uint = tail >> nbits
var code uint = uint((nbits << 1) + uint32(prefix) + 20)
writeBits(uint(depth[code]), uint64(bits[code]), storage_ix, storage)
writeBits(uint(nbits), uint64(tail)-(uint64(prefix)<<nbits), storage_ix, storage)
histo[code]++
} else if copylen < 2118 {
var tail uint = copylen - 70
var nbits uint32 = log2FloorNonZero(tail)
var code uint = uint(nbits + 28)
writeBits(uint(depth[code]), uint64(bits[code]), storage_ix, storage)
writeBits(uint(nbits), uint64(tail)-(uint64(uint(1))<<nbits), storage_ix, storage)
histo[code]++
} else {
writeBits(uint(depth[39]), uint64(bits[39]), storage_ix, storage)
writeBits(24, uint64(copylen)-2118, storage_ix, storage)
histo[39]++
}
}
func emitCopyLenLastDistance1(copylen uint, depth []byte, bits []uint16, histo []uint32, storage_ix *uint, storage []byte) {
if copylen < 12 {
writeBits(uint(depth[copylen-4]), uint64(bits[copylen-4]), storage_ix, storage)
histo[copylen-4]++
} else if copylen < 72 {
var tail uint = copylen - 8
var nbits uint32 = log2FloorNonZero(tail) - 1
var prefix uint = tail >> nbits
var code uint = uint((nbits << 1) + uint32(prefix) + 4)
writeBits(uint(depth[code]), uint64(bits[code]), storage_ix, storage)
writeBits(uint(nbits), uint64(tail)-(uint64(prefix)<<nbits), storage_ix, storage)
histo[code]++
} else if copylen < 136 {
var tail uint = copylen - 8
var code uint = (tail >> 5) + 30
writeBits(uint(depth[code]), uint64(bits[code]), storage_ix, storage)
writeBits(5, uint64(tail)&31, storage_ix, storage)
writeBits(uint(depth[64]), uint64(bits[64]), storage_ix, storage)
histo[code]++
histo[64]++
} else if copylen < 2120 {
var tail uint = copylen - 72
var nbits uint32 = log2FloorNonZero(tail)
var code uint = uint(nbits + 28)
writeBits(uint(depth[code]), uint64(bits[code]), storage_ix, storage)
writeBits(uint(nbits), uint64(tail)-(uint64(uint(1))<<nbits), storage_ix, storage)
writeBits(uint(depth[64]), uint64(bits[64]), storage_ix, storage)
histo[code]++
histo[64]++
} else {
writeBits(uint(depth[39]), uint64(bits[39]), storage_ix, storage)
writeBits(24, uint64(copylen)-2120, storage_ix, storage)
writeBits(uint(depth[64]), uint64(bits[64]), storage_ix, storage)
histo[39]++
histo[64]++
}
}
func emitDistance1(distance uint, depth []byte, bits []uint16, histo []uint32, storage_ix *uint, storage []byte) {
var d uint = distance + 3
var nbits uint32 = log2FloorNonZero(d) - 1
var prefix uint = (d >> nbits) & 1
var offset uint = (2 + prefix) << nbits
var distcode uint = uint(2*(nbits-1) + uint32(prefix) + 80)
writeBits(uint(depth[distcode]), uint64(bits[distcode]), storage_ix, storage)
writeBits(uint(nbits), uint64(d)-uint64(offset), storage_ix, storage)
histo[distcode]++
}
func emitLiterals(input []byte, len uint, depth []byte, bits []uint16, storage_ix *uint, storage []byte) {
var j uint
for j = 0; j < len; j++ {
var lit byte = input[j]
writeBits(uint(depth[lit]), uint64(bits[lit]), storage_ix, storage)
}
}
/* REQUIRES: len <= 1 << 24. */
func storeMetaBlockHeader1(len uint, is_uncompressed bool, storage_ix *uint, storage []byte) {
var nibbles uint = 6
/* ISLAST */
writeBits(1, 0, storage_ix, storage)
if len <= 1<<16 {
nibbles = 4
} else if len <= 1<<20 {
nibbles = 5
}
writeBits(2, uint64(nibbles)-4, storage_ix, storage)
writeBits(nibbles*4, uint64(len)-1, storage_ix, storage)
/* ISUNCOMPRESSED */
writeSingleBit(is_uncompressed, storage_ix, storage)
}
func updateBits(n_bits uint, bits uint32, pos uint, array []byte) {
for n_bits > 0 {
var byte_pos uint = pos >> 3
var n_unchanged_bits uint = pos & 7
var n_changed_bits uint = brotli_min_size_t(n_bits, 8-n_unchanged_bits)
var total_bits uint = n_unchanged_bits + n_changed_bits
var mask uint32 = (^((1 << total_bits) - 1)) | ((1 << n_unchanged_bits) - 1)
var unchanged_bits uint32 = uint32(array[byte_pos]) & mask
var changed_bits uint32 = bits & ((1 << n_changed_bits) - 1)
array[byte_pos] = byte(changed_bits<<n_unchanged_bits | unchanged_bits)
n_bits -= n_changed_bits
bits >>= n_changed_bits
pos += n_changed_bits
}
}
func rewindBitPosition1(new_storage_ix uint, storage_ix *uint, storage []byte) {
var bitpos uint = new_storage_ix & 7
var mask uint = (1 << bitpos) - 1
storage[new_storage_ix>>3] &= byte(mask)
*storage_ix = new_storage_ix
}
var shouldMergeBlock_kSampleRate uint = 43
func shouldMergeBlock(data []byte, len uint, depths []byte) bool {
var histo = [256]uint{0}
var i uint
for i = 0; i < len; i += shouldMergeBlock_kSampleRate {
histo[data[i]]++
}
{
var total uint = (len + shouldMergeBlock_kSampleRate - 1) / shouldMergeBlock_kSampleRate
var r float64 = (fastLog2(total)+0.5)*float64(total) + 200
for i = 0; i < 256; i++ {
r -= float64(histo[i]) * (float64(depths[i]) + fastLog2(histo[i]))
}
return r >= 0.0
}
}
func shouldUseUncompressedMode(metablock_start []byte, next_emit []byte, insertlen uint, literal_ratio uint) bool {
var compressed uint = uint(-cap(next_emit) + cap(metablock_start))
if compressed*50 > insertlen {
return false
} else {
return literal_ratio > 980
}
}
func emitUncompressedMetaBlock1(begin []byte, end []byte, storage_ix_start uint, storage_ix *uint, storage []byte) {
var len uint = uint(-cap(end) + cap(begin))
rewindBitPosition1(storage_ix_start, storage_ix, storage)
storeMetaBlockHeader1(uint(len), true, storage_ix, storage)
*storage_ix = (*storage_ix + 7) &^ 7
copy(storage[*storage_ix>>3:], begin[:len])
*storage_ix += uint(len << 3)
storage[*storage_ix>>3] = 0
}
var kCmdHistoSeed = [128]uint32{
0,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
0,
0,
0,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
0,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
0,
0,
0,
0,
}
var compressFragmentFastImpl_kFirstBlockSize uint = 3 << 15
var compressFragmentFastImpl_kMergeBlockSize uint = 1 << 16
func compressFragmentFastImpl(in []byte, input_size uint, is_last bool, table []int, table_bits uint, cmd_depth []byte, cmd_bits []uint16, cmd_code_numbits *uint, cmd_code []byte, storage_ix *uint, storage []byte) {
var cmd_histo [128]uint32
var ip_end int
var next_emit int = 0
var base_ip int = 0
var input int = 0
const kInputMarginBytes uint = windowGap
const kMinMatchLen uint = 5
var metablock_start int = input
var block_size uint = brotli_min_size_t(input_size, compressFragmentFastImpl_kFirstBlockSize)
var total_block_size uint = block_size
var mlen_storage_ix uint = *storage_ix + 3
var lit_depth [256]byte
var lit_bits [256]uint16
var literal_ratio uint
var ip int
var last_distance int
var shift uint = 64 - table_bits
/* "next_emit" is a pointer to the first byte that is not covered by a
previous copy. Bytes between "next_emit" and the start of the next copy or
the end of the input will be emitted as literal bytes. */
/* Save the start of the first block for position and distance computations.
*/
/* Save the bit position of the MLEN field of the meta-block header, so that
we can update it later if we decide to extend this meta-block. */
storeMetaBlockHeader1(block_size, false, storage_ix, storage)
/* No block splits, no contexts. */
writeBits(13, 0, storage_ix, storage)
literal_ratio = buildAndStoreLiteralPrefixCode(in[input:], block_size, lit_depth[:], lit_bits[:], storage_ix, storage)
{
/* Store the pre-compressed command and distance prefix codes. */
var i uint
for i = 0; i+7 < *cmd_code_numbits; i += 8 {
writeBits(8, uint64(cmd_code[i>>3]), storage_ix, storage)
}
}
writeBits(*cmd_code_numbits&7, uint64(cmd_code[*cmd_code_numbits>>3]), storage_ix, storage)
/* Initialize the command and distance histograms. We will gather
statistics of command and distance codes during the processing
of this block and use it to update the command and distance
prefix codes for the next block. */
emit_commands:
copy(cmd_histo[:], kCmdHistoSeed[:])
/* "ip" is the input pointer. */
ip = input
last_distance = -1
ip_end = int(uint(input) + block_size)
if block_size >= kInputMarginBytes {
var len_limit uint = brotli_min_size_t(block_size-kMinMatchLen, input_size-kInputMarginBytes)
var ip_limit int = int(uint(input) + len_limit)
/* For the last block, we need to keep a 16 bytes margin so that we can be
sure that all distances are at most window size - 16.
For all other blocks, we only need to keep a margin of 5 bytes so that
we don't go over the block size with a copy. */
var next_hash uint32
ip++
for next_hash = hash5(in[ip:], shift); ; {
var skip uint32 = 32
var next_ip int = ip
/* Step 1: Scan forward in the input looking for a 5-byte-long match.
If we get close to exhausting the input then goto emit_remainder.
Heuristic match skipping: If 32 bytes are scanned with no matches
found, start looking only at every other byte. If 32 more bytes are
scanned, look at every third byte, etc.. When a match is found,
immediately go back to looking at every byte. This is a small loss
(~5% performance, ~0.1% density) for compressible data due to more
bookkeeping, but for non-compressible data (such as JPEG) it's a huge
win since the compressor quickly "realizes" the data is incompressible
and doesn't bother looking for matches everywhere.
The "skip" variable keeps track of how many bytes there are since the
last match; dividing it by 32 (i.e. right-shifting by five) gives the
number of bytes to move ahead for each iteration. */
var candidate int
assert(next_emit < ip)
trawl:
for {
var hash uint32 = next_hash
var bytes_between_hash_lookups uint32 = skip >> 5
skip++
assert(hash == hash5(in[next_ip:], shift))
ip = next_ip
next_ip = int(uint32(ip) + bytes_between_hash_lookups)
if next_ip > ip_limit {
goto emit_remainder
}
next_hash = hash5(in[next_ip:], shift)
candidate = ip - last_distance
if isMatch5(in[ip:], in[candidate:]) {
if candidate < ip {
table[hash] = int(ip - base_ip)
break
}
}
candidate = base_ip + table[hash]
assert(candidate >= base_ip)
assert(candidate < ip)
table[hash] = int(ip - base_ip)
if !(!isMatch5(in[ip:], in[candidate:])) {
break
}
}
/* Check copy distance. If candidate is not feasible, continue search.
Checking is done outside of hot loop to reduce overhead. */
if ip-candidate > maxDistance_compress_fragment {
goto trawl
}
/* Step 2: Emit the found match together with the literal bytes from
"next_emit" to the bit stream, and then see if we can find a next match
immediately afterwards. Repeat until we find no match for the input
without emitting some literal bytes. */
{
var base int = ip
/* > 0 */
var matched uint = 5 + findMatchLengthWithLimit(in[candidate+5:], in[ip+5:], uint(ip_end-ip)-5)
var distance int = int(base - candidate)
/* We have a 5-byte match at ip, and we need to emit bytes in
[next_emit, ip). */
var insert uint = uint(base - next_emit)
ip += int(matched)
if insert < 6210 {
emitInsertLen1(insert, cmd_depth, cmd_bits, cmd_histo[:], storage_ix, storage)
} else if shouldUseUncompressedMode(in[metablock_start:], in[next_emit:], insert, literal_ratio) {
emitUncompressedMetaBlock1(in[metablock_start:], in[base:], mlen_storage_ix-3, storage_ix, storage)
input_size -= uint(base - input)
input = base
next_emit = input
goto next_block
} else {
emitLongInsertLen(insert, cmd_depth, cmd_bits, cmd_histo[:], storage_ix, storage)
}
emitLiterals(in[next_emit:], insert, lit_depth[:], lit_bits[:], storage_ix, storage)
if distance == last_distance {
writeBits(uint(cmd_depth[64]), uint64(cmd_bits[64]), storage_ix, storage)
cmd_histo[64]++
} else {
emitDistance1(uint(distance), cmd_depth, cmd_bits, cmd_histo[:], storage_ix, storage)
last_distance = distance
}
emitCopyLenLastDistance1(matched, cmd_depth, cmd_bits, cmd_histo[:], storage_ix, storage)
next_emit = ip
if ip >= ip_limit {
goto emit_remainder
}
/* We could immediately start working at ip now, but to improve
compression we first update "table" with the hashes of some positions
within the last copy. */
{
var input_bytes uint64 = binary.LittleEndian.Uint64(in[ip-3:])
var prev_hash uint32 = hashBytesAtOffset5(input_bytes, 0, shift)
var cur_hash uint32 = hashBytesAtOffset5(input_bytes, 3, shift)
table[prev_hash] = int(ip - base_ip - 3)
prev_hash = hashBytesAtOffset5(input_bytes, 1, shift)
table[prev_hash] = int(ip - base_ip - 2)
prev_hash = hashBytesAtOffset5(input_bytes, 2, shift)
table[prev_hash] = int(ip - base_ip - 1)
candidate = base_ip + table[cur_hash]
table[cur_hash] = int(ip - base_ip)
}
}
for isMatch5(in[ip:], in[candidate:]) {
var base int = ip
/* We have a 5-byte match at ip, and no need to emit any literal bytes
prior to ip. */
var matched uint = 5 + findMatchLengthWithLimit(in[candidate+5:], in[ip+5:], uint(ip_end-ip)-5)
if ip-candidate > maxDistance_compress_fragment {
break
}
ip += int(matched)
last_distance = int(base - candidate) /* > 0 */
emitCopyLen1(matched, cmd_depth, cmd_bits, cmd_histo[:], storage_ix, storage)
emitDistance1(uint(last_distance), cmd_depth, cmd_bits, cmd_histo[:], storage_ix, storage)
next_emit = ip
if ip >= ip_limit {
goto emit_remainder
}
/* We could immediately start working at ip now, but to improve
compression we first update "table" with the hashes of some positions
within the last copy. */
{
var input_bytes uint64 = binary.LittleEndian.Uint64(in[ip-3:])
var prev_hash uint32 = hashBytesAtOffset5(input_bytes, 0, shift)
var cur_hash uint32 = hashBytesAtOffset5(input_bytes, 3, shift)
table[prev_hash] = int(ip - base_ip - 3)
prev_hash = hashBytesAtOffset5(input_bytes, 1, shift)
table[prev_hash] = int(ip - base_ip - 2)
prev_hash = hashBytesAtOffset5(input_bytes, 2, shift)
table[prev_hash] = int(ip - base_ip - 1)
candidate = base_ip + table[cur_hash]
table[cur_hash] = int(ip - base_ip)
}
}
ip++
next_hash = hash5(in[ip:], shift)
}
}
emit_remainder:
assert(next_emit <= ip_end)
input += int(block_size)
input_size -= block_size
block_size = brotli_min_size_t(input_size, compressFragmentFastImpl_kMergeBlockSize)
/* Decide if we want to continue this meta-block instead of emitting the
last insert-only command. */
if input_size > 0 && total_block_size+block_size <= 1<<20 && shouldMergeBlock(in[input:], block_size, lit_depth[:]) {
assert(total_block_size > 1<<16)
/* Update the size of the current meta-block and continue emitting commands.
We can do this because the current size and the new size both have 5
nibbles. */
total_block_size += block_size
updateBits(20, uint32(total_block_size-1), mlen_storage_ix, storage)
goto emit_commands
}
/* Emit the remaining bytes as literals. */
if next_emit < ip_end {
var insert uint = uint(ip_end - next_emit)
if insert < 6210 {
emitInsertLen1(insert, cmd_depth, cmd_bits, cmd_histo[:], storage_ix, storage)
emitLiterals(in[next_emit:], insert, lit_depth[:], lit_bits[:], storage_ix, storage)
} else if shouldUseUncompressedMode(in[metablock_start:], in[next_emit:], insert, literal_ratio) {
emitUncompressedMetaBlock1(in[metablock_start:], in[ip_end:], mlen_storage_ix-3, storage_ix, storage)
} else {
emitLongInsertLen(insert, cmd_depth, cmd_bits, cmd_histo[:], storage_ix, storage)
emitLiterals(in[next_emit:], insert, lit_depth[:], lit_bits[:], storage_ix, storage)
}
}
next_emit = ip_end
/* If we have more data, write a new meta-block header and prefix codes and
then continue emitting commands. */
next_block:
if input_size > 0 {
metablock_start = input
block_size = brotli_min_size_t(input_size, compressFragmentFastImpl_kFirstBlockSize)
total_block_size = block_size
/* Save the bit position of the MLEN field of the meta-block header, so that
we can update it later if we decide to extend this meta-block. */
mlen_storage_ix = *storage_ix + 3
storeMetaBlockHeader1(block_size, false, storage_ix, storage)
/* No block splits, no contexts. */
writeBits(13, 0, storage_ix, storage)
literal_ratio = buildAndStoreLiteralPrefixCode(in[input:], block_size, lit_depth[:], lit_bits[:], storage_ix, storage)
buildAndStoreCommandPrefixCode1(cmd_histo[:], cmd_depth, cmd_bits, storage_ix, storage)
goto emit_commands
}
if !is_last {
/* If this is not the last block, update the command and distance prefix
codes for the next block and store the compressed forms. */
cmd_code[0] = 0
*cmd_code_numbits = 0
buildAndStoreCommandPrefixCode1(cmd_histo[:], cmd_depth, cmd_bits, cmd_code_numbits, cmd_code)
}
}
/* Compresses "input" string to the "*storage" buffer as one or more complete
meta-blocks, and updates the "*storage_ix" bit position.
If "is_last" is 1, emits an additional empty last meta-block.
"cmd_depth" and "cmd_bits" contain the command and distance prefix codes
(see comment in encode.h) used for the encoding of this input fragment.
If "is_last" is 0, they are updated to reflect the statistics
of this input fragment, to be used for the encoding of the next fragment.
"*cmd_code_numbits" is the number of bits of the compressed representation
of the command and distance prefix codes, and "cmd_code" is an array of
at least "(*cmd_code_numbits + 7) >> 3" size that contains the compressed
command and distance prefix codes. If "is_last" is 0, these are also
updated to represent the updated "cmd_depth" and "cmd_bits".
REQUIRES: "input_size" is greater than zero, or "is_last" is 1.
REQUIRES: "input_size" is less or equal to maximal metablock size (1 << 24).
REQUIRES: All elements in "table[0..table_size-1]" are initialized to zero.
REQUIRES: "table_size" is an odd (9, 11, 13, 15) power of two
OUTPUT: maximal copy distance <= |input_size|
OUTPUT: maximal copy distance <= BROTLI_MAX_BACKWARD_LIMIT(18) */
func compressFragmentFast(input []byte, input_size uint, is_last bool, table []int, table_size uint, cmd_depth []byte, cmd_bits []uint16, cmd_code_numbits *uint, cmd_code []byte, storage_ix *uint, storage []byte) {
var initial_storage_ix uint = *storage_ix
var table_bits uint = uint(log2FloorNonZero(table_size))
if input_size == 0 {
assert(is_last)
writeBits(1, 1, storage_ix, storage) /* islast */
writeBits(1, 1, storage_ix, storage) /* isempty */
*storage_ix = (*storage_ix + 7) &^ 7
return
}
compressFragmentFastImpl(input, input_size, is_last, table, table_bits, cmd_depth, cmd_bits, cmd_code_numbits, cmd_code, storage_ix, storage)
/* If output is larger than single uncompressed block, rewrite it. */
if *storage_ix-initial_storage_ix > 31+(input_size<<3) {
emitUncompressedMetaBlock1(input, input[input_size:], initial_storage_ix, storage_ix, storage)
}
if is_last {
writeBits(1, 1, storage_ix, storage) /* islast */
writeBits(1, 1, storage_ix, storage) /* isempty */
*storage_ix = (*storage_ix + 7) &^ 7
}
}