mirror of
https://codeberg.org/forgejo/forgejo.git
synced 2025-01-07 07:00:13 -05:00
317 lines
7.8 KiB
Go
317 lines
7.8 KiB
Go
|
// Package quantile computes approximate quantiles over an unbounded data
|
||
|
// stream within low memory and CPU bounds.
|
||
|
//
|
||
|
// A small amount of accuracy is traded to achieve the above properties.
|
||
|
//
|
||
|
// Multiple streams can be merged before calling Query to generate a single set
|
||
|
// of results. This is meaningful when the streams represent the same type of
|
||
|
// data. See Merge and Samples.
|
||
|
//
|
||
|
// For more detailed information about the algorithm used, see:
|
||
|
//
|
||
|
// Effective Computation of Biased Quantiles over Data Streams
|
||
|
//
|
||
|
// http://www.cs.rutgers.edu/~muthu/bquant.pdf
|
||
|
package quantile
|
||
|
|
||
|
import (
|
||
|
"math"
|
||
|
"sort"
|
||
|
)
|
||
|
|
||
|
// Sample holds an observed value and meta information for compression. JSON
|
||
|
// tags have been added for convenience.
|
||
|
type Sample struct {
|
||
|
Value float64 `json:",string"`
|
||
|
Width float64 `json:",string"`
|
||
|
Delta float64 `json:",string"`
|
||
|
}
|
||
|
|
||
|
// Samples represents a slice of samples. It implements sort.Interface.
|
||
|
type Samples []Sample
|
||
|
|
||
|
func (a Samples) Len() int { return len(a) }
|
||
|
func (a Samples) Less(i, j int) bool { return a[i].Value < a[j].Value }
|
||
|
func (a Samples) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
|
||
|
|
||
|
type invariant func(s *stream, r float64) float64
|
||
|
|
||
|
// NewLowBiased returns an initialized Stream for low-biased quantiles
|
||
|
// (e.g. 0.01, 0.1, 0.5) where the needed quantiles are not known a priori, but
|
||
|
// error guarantees can still be given even for the lower ranks of the data
|
||
|
// distribution.
|
||
|
//
|
||
|
// The provided epsilon is a relative error, i.e. the true quantile of a value
|
||
|
// returned by a query is guaranteed to be within (1±Epsilon)*Quantile.
|
||
|
//
|
||
|
// See http://www.cs.rutgers.edu/~muthu/bquant.pdf for time, space, and error
|
||
|
// properties.
|
||
|
func NewLowBiased(epsilon float64) *Stream {
|
||
|
ƒ := func(s *stream, r float64) float64 {
|
||
|
return 2 * epsilon * r
|
||
|
}
|
||
|
return newStream(ƒ)
|
||
|
}
|
||
|
|
||
|
// NewHighBiased returns an initialized Stream for high-biased quantiles
|
||
|
// (e.g. 0.01, 0.1, 0.5) where the needed quantiles are not known a priori, but
|
||
|
// error guarantees can still be given even for the higher ranks of the data
|
||
|
// distribution.
|
||
|
//
|
||
|
// The provided epsilon is a relative error, i.e. the true quantile of a value
|
||
|
// returned by a query is guaranteed to be within 1-(1±Epsilon)*(1-Quantile).
|
||
|
//
|
||
|
// See http://www.cs.rutgers.edu/~muthu/bquant.pdf for time, space, and error
|
||
|
// properties.
|
||
|
func NewHighBiased(epsilon float64) *Stream {
|
||
|
ƒ := func(s *stream, r float64) float64 {
|
||
|
return 2 * epsilon * (s.n - r)
|
||
|
}
|
||
|
return newStream(ƒ)
|
||
|
}
|
||
|
|
||
|
// NewTargeted returns an initialized Stream concerned with a particular set of
|
||
|
// quantile values that are supplied a priori. Knowing these a priori reduces
|
||
|
// space and computation time. The targets map maps the desired quantiles to
|
||
|
// their absolute errors, i.e. the true quantile of a value returned by a query
|
||
|
// is guaranteed to be within (Quantile±Epsilon).
|
||
|
//
|
||
|
// See http://www.cs.rutgers.edu/~muthu/bquant.pdf for time, space, and error properties.
|
||
|
func NewTargeted(targetMap map[float64]float64) *Stream {
|
||
|
// Convert map to slice to avoid slow iterations on a map.
|
||
|
// ƒ is called on the hot path, so converting the map to a slice
|
||
|
// beforehand results in significant CPU savings.
|
||
|
targets := targetMapToSlice(targetMap)
|
||
|
|
||
|
ƒ := func(s *stream, r float64) float64 {
|
||
|
var m = math.MaxFloat64
|
||
|
var f float64
|
||
|
for _, t := range targets {
|
||
|
if t.quantile*s.n <= r {
|
||
|
f = (2 * t.epsilon * r) / t.quantile
|
||
|
} else {
|
||
|
f = (2 * t.epsilon * (s.n - r)) / (1 - t.quantile)
|
||
|
}
|
||
|
if f < m {
|
||
|
m = f
|
||
|
}
|
||
|
}
|
||
|
return m
|
||
|
}
|
||
|
return newStream(ƒ)
|
||
|
}
|
||
|
|
||
|
type target struct {
|
||
|
quantile float64
|
||
|
epsilon float64
|
||
|
}
|
||
|
|
||
|
func targetMapToSlice(targetMap map[float64]float64) []target {
|
||
|
targets := make([]target, 0, len(targetMap))
|
||
|
|
||
|
for quantile, epsilon := range targetMap {
|
||
|
t := target{
|
||
|
quantile: quantile,
|
||
|
epsilon: epsilon,
|
||
|
}
|
||
|
targets = append(targets, t)
|
||
|
}
|
||
|
|
||
|
return targets
|
||
|
}
|
||
|
|
||
|
// Stream computes quantiles for a stream of float64s. It is not thread-safe by
|
||
|
// design. Take care when using across multiple goroutines.
|
||
|
type Stream struct {
|
||
|
*stream
|
||
|
b Samples
|
||
|
sorted bool
|
||
|
}
|
||
|
|
||
|
func newStream(ƒ invariant) *Stream {
|
||
|
x := &stream{ƒ: ƒ}
|
||
|
return &Stream{x, make(Samples, 0, 500), true}
|
||
|
}
|
||
|
|
||
|
// Insert inserts v into the stream.
|
||
|
func (s *Stream) Insert(v float64) {
|
||
|
s.insert(Sample{Value: v, Width: 1})
|
||
|
}
|
||
|
|
||
|
func (s *Stream) insert(sample Sample) {
|
||
|
s.b = append(s.b, sample)
|
||
|
s.sorted = false
|
||
|
if len(s.b) == cap(s.b) {
|
||
|
s.flush()
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Query returns the computed qth percentiles value. If s was created with
|
||
|
// NewTargeted, and q is not in the set of quantiles provided a priori, Query
|
||
|
// will return an unspecified result.
|
||
|
func (s *Stream) Query(q float64) float64 {
|
||
|
if !s.flushed() {
|
||
|
// Fast path when there hasn't been enough data for a flush;
|
||
|
// this also yields better accuracy for small sets of data.
|
||
|
l := len(s.b)
|
||
|
if l == 0 {
|
||
|
return 0
|
||
|
}
|
||
|
i := int(math.Ceil(float64(l) * q))
|
||
|
if i > 0 {
|
||
|
i -= 1
|
||
|
}
|
||
|
s.maybeSort()
|
||
|
return s.b[i].Value
|
||
|
}
|
||
|
s.flush()
|
||
|
return s.stream.query(q)
|
||
|
}
|
||
|
|
||
|
// Merge merges samples into the underlying streams samples. This is handy when
|
||
|
// merging multiple streams from separate threads, database shards, etc.
|
||
|
//
|
||
|
// ATTENTION: This method is broken and does not yield correct results. The
|
||
|
// underlying algorithm is not capable of merging streams correctly.
|
||
|
func (s *Stream) Merge(samples Samples) {
|
||
|
sort.Sort(samples)
|
||
|
s.stream.merge(samples)
|
||
|
}
|
||
|
|
||
|
// Reset reinitializes and clears the list reusing the samples buffer memory.
|
||
|
func (s *Stream) Reset() {
|
||
|
s.stream.reset()
|
||
|
s.b = s.b[:0]
|
||
|
}
|
||
|
|
||
|
// Samples returns stream samples held by s.
|
||
|
func (s *Stream) Samples() Samples {
|
||
|
if !s.flushed() {
|
||
|
return s.b
|
||
|
}
|
||
|
s.flush()
|
||
|
return s.stream.samples()
|
||
|
}
|
||
|
|
||
|
// Count returns the total number of samples observed in the stream
|
||
|
// since initialization.
|
||
|
func (s *Stream) Count() int {
|
||
|
return len(s.b) + s.stream.count()
|
||
|
}
|
||
|
|
||
|
func (s *Stream) flush() {
|
||
|
s.maybeSort()
|
||
|
s.stream.merge(s.b)
|
||
|
s.b = s.b[:0]
|
||
|
}
|
||
|
|
||
|
func (s *Stream) maybeSort() {
|
||
|
if !s.sorted {
|
||
|
s.sorted = true
|
||
|
sort.Sort(s.b)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (s *Stream) flushed() bool {
|
||
|
return len(s.stream.l) > 0
|
||
|
}
|
||
|
|
||
|
type stream struct {
|
||
|
n float64
|
||
|
l []Sample
|
||
|
ƒ invariant
|
||
|
}
|
||
|
|
||
|
func (s *stream) reset() {
|
||
|
s.l = s.l[:0]
|
||
|
s.n = 0
|
||
|
}
|
||
|
|
||
|
func (s *stream) insert(v float64) {
|
||
|
s.merge(Samples{{v, 1, 0}})
|
||
|
}
|
||
|
|
||
|
func (s *stream) merge(samples Samples) {
|
||
|
// TODO(beorn7): This tries to merge not only individual samples, but
|
||
|
// whole summaries. The paper doesn't mention merging summaries at
|
||
|
// all. Unittests show that the merging is inaccurate. Find out how to
|
||
|
// do merges properly.
|
||
|
var r float64
|
||
|
i := 0
|
||
|
for _, sample := range samples {
|
||
|
for ; i < len(s.l); i++ {
|
||
|
c := s.l[i]
|
||
|
if c.Value > sample.Value {
|
||
|
// Insert at position i.
|
||
|
s.l = append(s.l, Sample{})
|
||
|
copy(s.l[i+1:], s.l[i:])
|
||
|
s.l[i] = Sample{
|
||
|
sample.Value,
|
||
|
sample.Width,
|
||
|
math.Max(sample.Delta, math.Floor(s.ƒ(s, r))-1),
|
||
|
// TODO(beorn7): How to calculate delta correctly?
|
||
|
}
|
||
|
i++
|
||
|
goto inserted
|
||
|
}
|
||
|
r += c.Width
|
||
|
}
|
||
|
s.l = append(s.l, Sample{sample.Value, sample.Width, 0})
|
||
|
i++
|
||
|
inserted:
|
||
|
s.n += sample.Width
|
||
|
r += sample.Width
|
||
|
}
|
||
|
s.compress()
|
||
|
}
|
||
|
|
||
|
func (s *stream) count() int {
|
||
|
return int(s.n)
|
||
|
}
|
||
|
|
||
|
func (s *stream) query(q float64) float64 {
|
||
|
t := math.Ceil(q * s.n)
|
||
|
t += math.Ceil(s.ƒ(s, t) / 2)
|
||
|
p := s.l[0]
|
||
|
var r float64
|
||
|
for _, c := range s.l[1:] {
|
||
|
r += p.Width
|
||
|
if r+c.Width+c.Delta > t {
|
||
|
return p.Value
|
||
|
}
|
||
|
p = c
|
||
|
}
|
||
|
return p.Value
|
||
|
}
|
||
|
|
||
|
func (s *stream) compress() {
|
||
|
if len(s.l) < 2 {
|
||
|
return
|
||
|
}
|
||
|
x := s.l[len(s.l)-1]
|
||
|
xi := len(s.l) - 1
|
||
|
r := s.n - 1 - x.Width
|
||
|
|
||
|
for i := len(s.l) - 2; i >= 0; i-- {
|
||
|
c := s.l[i]
|
||
|
if c.Width+x.Width+x.Delta <= s.ƒ(s, r) {
|
||
|
x.Width += c.Width
|
||
|
s.l[xi] = x
|
||
|
// Remove element at i.
|
||
|
copy(s.l[i:], s.l[i+1:])
|
||
|
s.l = s.l[:len(s.l)-1]
|
||
|
xi -= 1
|
||
|
} else {
|
||
|
x = c
|
||
|
xi = i
|
||
|
}
|
||
|
r -= c.Width
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (s *stream) samples() Samples {
|
||
|
samples := make(Samples, len(s.l))
|
||
|
copy(samples, s.l)
|
||
|
return samples
|
||
|
}
|