0
Fork 0
mirror of https://github.com/caddyserver/caddy.git synced 2025-01-27 23:03:37 -05:00
caddy/caddyhttp/proxy/policy_test.go
Augusto Roman 463c9d9dd2 Fix data race for max connection limiting in proxy directive. (#1438)
* Fix data race for max connection limiting in proxy directive.

The Conns and Unhealthy fields are updated concurrently across all active
requests.  Because of this, they must use atomic operations for reads and
writes.

Prior to this change, Conns was incremented atomically, but read unsafely.
Unhealthly was updated & read unsafely.  The new test
TestReverseProxyMaxConnLimit exposes this race when run with -race.

Switching to atomic operations makes the race detector happy.

* oops, remove leftover dead code.
2017-02-15 08:09:42 -07:00

228 lines
5.9 KiB
Go

package proxy
import (
"net/http"
"net/http/httptest"
"os"
"testing"
)
var workableServer *httptest.Server
func TestMain(m *testing.M) {
workableServer = httptest.NewServer(http.HandlerFunc(
func(w http.ResponseWriter, r *http.Request) {
// do nothing
}))
r := m.Run()
workableServer.Close()
os.Exit(r)
}
type customPolicy struct{}
func (r *customPolicy) Select(pool HostPool, request *http.Request) *UpstreamHost {
return pool[0]
}
func testPool() HostPool {
pool := []*UpstreamHost{
{
Name: workableServer.URL, // this should resolve (healthcheck test)
},
{
Name: "http://localhost:99998", // this shouldn't
},
{
Name: "http://C",
},
}
return HostPool(pool)
}
func TestRoundRobinPolicy(t *testing.T) {
pool := testPool()
rrPolicy := &RoundRobin{}
request, _ := http.NewRequest("GET", "/", nil)
h := rrPolicy.Select(pool, request)
// First selected host is 1, because counter starts at 0
// and increments before host is selected
if h != pool[1] {
t.Error("Expected first round robin host to be second host in the pool.")
}
h = rrPolicy.Select(pool, request)
if h != pool[2] {
t.Error("Expected second round robin host to be third host in the pool.")
}
h = rrPolicy.Select(pool, request)
if h != pool[0] {
t.Error("Expected third round robin host to be first host in the pool.")
}
// mark host as down
pool[1].Unhealthy = 1
h = rrPolicy.Select(pool, request)
if h != pool[2] {
t.Error("Expected to skip down host.")
}
// mark host as up
pool[1].Unhealthy = 0
h = rrPolicy.Select(pool, request)
if h == pool[2] {
t.Error("Expected to balance evenly among healthy hosts")
}
// mark host as full
pool[1].Conns = 1
pool[1].MaxConns = 1
h = rrPolicy.Select(pool, request)
if h != pool[2] {
t.Error("Expected to skip full host.")
}
}
func TestLeastConnPolicy(t *testing.T) {
pool := testPool()
lcPolicy := &LeastConn{}
request, _ := http.NewRequest("GET", "/", nil)
pool[0].Conns = 10
pool[1].Conns = 10
h := lcPolicy.Select(pool, request)
if h != pool[2] {
t.Error("Expected least connection host to be third host.")
}
pool[2].Conns = 100
h = lcPolicy.Select(pool, request)
if h != pool[0] && h != pool[1] {
t.Error("Expected least connection host to be first or second host.")
}
}
func TestCustomPolicy(t *testing.T) {
pool := testPool()
customPolicy := &customPolicy{}
request, _ := http.NewRequest("GET", "/", nil)
h := customPolicy.Select(pool, request)
if h != pool[0] {
t.Error("Expected custom policy host to be the first host.")
}
}
func TestIPHashPolicy(t *testing.T) {
pool := testPool()
ipHash := &IPHash{}
request, _ := http.NewRequest("GET", "/", nil)
// We should be able to predict where every request is routed.
request.RemoteAddr = "172.0.0.1:80"
h := ipHash.Select(pool, request)
if h != pool[1] {
t.Error("Expected ip hash policy host to be the second host.")
}
request.RemoteAddr = "172.0.0.2:80"
h = ipHash.Select(pool, request)
if h != pool[1] {
t.Error("Expected ip hash policy host to be the second host.")
}
request.RemoteAddr = "172.0.0.3:80"
h = ipHash.Select(pool, request)
if h != pool[2] {
t.Error("Expected ip hash policy host to be the third host.")
}
request.RemoteAddr = "172.0.0.4:80"
h = ipHash.Select(pool, request)
if h != pool[1] {
t.Error("Expected ip hash policy host to be the second host.")
}
// we should get the same results without a port
request.RemoteAddr = "172.0.0.1"
h = ipHash.Select(pool, request)
if h != pool[1] {
t.Error("Expected ip hash policy host to be the second host.")
}
request.RemoteAddr = "172.0.0.2"
h = ipHash.Select(pool, request)
if h != pool[1] {
t.Error("Expected ip hash policy host to be the second host.")
}
request.RemoteAddr = "172.0.0.3"
h = ipHash.Select(pool, request)
if h != pool[2] {
t.Error("Expected ip hash policy host to be the third host.")
}
request.RemoteAddr = "172.0.0.4"
h = ipHash.Select(pool, request)
if h != pool[1] {
t.Error("Expected ip hash policy host to be the second host.")
}
// we should get a healthy host if the original host is unhealthy and a
// healthy host is available
request.RemoteAddr = "172.0.0.1"
pool[1].Unhealthy = 1
h = ipHash.Select(pool, request)
if h != pool[2] {
t.Error("Expected ip hash policy host to be the third host.")
}
request.RemoteAddr = "172.0.0.2"
h = ipHash.Select(pool, request)
if h != pool[2] {
t.Error("Expected ip hash policy host to be the third host.")
}
pool[1].Unhealthy = 0
request.RemoteAddr = "172.0.0.3"
pool[2].Unhealthy = 1
h = ipHash.Select(pool, request)
if h != pool[0] {
t.Error("Expected ip hash policy host to be the first host.")
}
request.RemoteAddr = "172.0.0.4"
h = ipHash.Select(pool, request)
if h != pool[1] {
t.Error("Expected ip hash policy host to be the second host.")
}
// We should be able to resize the host pool and still be able to predict
// where a request will be routed with the same IP's used above
pool = []*UpstreamHost{
{
Name: workableServer.URL, // this should resolve (healthcheck test)
},
{
Name: "http://localhost:99998", // this shouldn't
},
}
pool = HostPool(pool)
request.RemoteAddr = "172.0.0.1:80"
h = ipHash.Select(pool, request)
if h != pool[0] {
t.Error("Expected ip hash policy host to be the first host.")
}
request.RemoteAddr = "172.0.0.2:80"
h = ipHash.Select(pool, request)
if h != pool[1] {
t.Error("Expected ip hash policy host to be the second host.")
}
request.RemoteAddr = "172.0.0.3:80"
h = ipHash.Select(pool, request)
if h != pool[0] {
t.Error("Expected ip hash policy host to be the first host.")
}
request.RemoteAddr = "172.0.0.4:80"
h = ipHash.Select(pool, request)
if h != pool[1] {
t.Error("Expected ip hash policy host to be the second host.")
}
// We should get nil when there are no healthy hosts
pool[0].Unhealthy = 1
pool[1].Unhealthy = 1
h = ipHash.Select(pool, request)
if h != nil {
t.Error("Expected ip hash policy host to be nil.")
}
}