0
Fork 0
mirror of https://github.com/caddyserver/caddy.git synced 2024-12-23 22:27:38 -05:00
caddy/vendor/github.com/bifurcation/mint/crypto.go
Amos Ng 1201492222 vendor: Updated quic-go for QUIC 39+ (#1968)
* Updated lucas-clemente/quic-go for QUIC 39+ support

* Update quic-go to latest
2018-02-16 22:29:53 -07:00

654 lines
18 KiB
Go

package mint
import (
"bytes"
"crypto"
"crypto/aes"
"crypto/cipher"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/hmac"
"crypto/rand"
"crypto/rsa"
"crypto/x509"
"crypto/x509/pkix"
"encoding/asn1"
"fmt"
"math/big"
"time"
"golang.org/x/crypto/curve25519"
// Blank includes to ensure hash support
_ "crypto/sha1"
_ "crypto/sha256"
_ "crypto/sha512"
)
var prng = rand.Reader
type aeadFactory func(key []byte) (cipher.AEAD, error)
type CipherSuiteParams struct {
Suite CipherSuite
Cipher aeadFactory // Cipher factory
Hash crypto.Hash // Hash function
KeyLen int // Key length in octets
IvLen int // IV length in octets
}
type signatureAlgorithm uint8
const (
signatureAlgorithmUnknown = iota
signatureAlgorithmRSA_PKCS1
signatureAlgorithmRSA_PSS
signatureAlgorithmECDSA
)
var (
hashMap = map[SignatureScheme]crypto.Hash{
RSA_PKCS1_SHA1: crypto.SHA1,
RSA_PKCS1_SHA256: crypto.SHA256,
RSA_PKCS1_SHA384: crypto.SHA384,
RSA_PKCS1_SHA512: crypto.SHA512,
ECDSA_P256_SHA256: crypto.SHA256,
ECDSA_P384_SHA384: crypto.SHA384,
ECDSA_P521_SHA512: crypto.SHA512,
RSA_PSS_SHA256: crypto.SHA256,
RSA_PSS_SHA384: crypto.SHA384,
RSA_PSS_SHA512: crypto.SHA512,
}
sigMap = map[SignatureScheme]signatureAlgorithm{
RSA_PKCS1_SHA1: signatureAlgorithmRSA_PKCS1,
RSA_PKCS1_SHA256: signatureAlgorithmRSA_PKCS1,
RSA_PKCS1_SHA384: signatureAlgorithmRSA_PKCS1,
RSA_PKCS1_SHA512: signatureAlgorithmRSA_PKCS1,
ECDSA_P256_SHA256: signatureAlgorithmECDSA,
ECDSA_P384_SHA384: signatureAlgorithmECDSA,
ECDSA_P521_SHA512: signatureAlgorithmECDSA,
RSA_PSS_SHA256: signatureAlgorithmRSA_PSS,
RSA_PSS_SHA384: signatureAlgorithmRSA_PSS,
RSA_PSS_SHA512: signatureAlgorithmRSA_PSS,
}
curveMap = map[SignatureScheme]NamedGroup{
ECDSA_P256_SHA256: P256,
ECDSA_P384_SHA384: P384,
ECDSA_P521_SHA512: P521,
}
newAESGCM = func(key []byte) (cipher.AEAD, error) {
block, err := aes.NewCipher(key)
if err != nil {
return nil, err
}
// TLS always uses 12-byte nonces
return cipher.NewGCMWithNonceSize(block, 12)
}
cipherSuiteMap = map[CipherSuite]CipherSuiteParams{
TLS_AES_128_GCM_SHA256: {
Suite: TLS_AES_128_GCM_SHA256,
Cipher: newAESGCM,
Hash: crypto.SHA256,
KeyLen: 16,
IvLen: 12,
},
TLS_AES_256_GCM_SHA384: {
Suite: TLS_AES_256_GCM_SHA384,
Cipher: newAESGCM,
Hash: crypto.SHA384,
KeyLen: 32,
IvLen: 12,
},
}
x509AlgMap = map[SignatureScheme]x509.SignatureAlgorithm{
RSA_PKCS1_SHA1: x509.SHA1WithRSA,
RSA_PKCS1_SHA256: x509.SHA256WithRSA,
RSA_PKCS1_SHA384: x509.SHA384WithRSA,
RSA_PKCS1_SHA512: x509.SHA512WithRSA,
ECDSA_P256_SHA256: x509.ECDSAWithSHA256,
ECDSA_P384_SHA384: x509.ECDSAWithSHA384,
ECDSA_P521_SHA512: x509.ECDSAWithSHA512,
}
defaultRSAKeySize = 2048
)
func curveFromNamedGroup(group NamedGroup) (crv elliptic.Curve) {
switch group {
case P256:
crv = elliptic.P256()
case P384:
crv = elliptic.P384()
case P521:
crv = elliptic.P521()
}
return
}
func namedGroupFromECDSAKey(key *ecdsa.PublicKey) (g NamedGroup) {
switch key.Curve.Params().Name {
case elliptic.P256().Params().Name:
g = P256
case elliptic.P384().Params().Name:
g = P384
case elliptic.P521().Params().Name:
g = P521
}
return
}
func keyExchangeSizeFromNamedGroup(group NamedGroup) (size int) {
size = 0
switch group {
case X25519:
size = 32
case P256:
size = 65
case P384:
size = 97
case P521:
size = 133
case FFDHE2048:
size = 256
case FFDHE3072:
size = 384
case FFDHE4096:
size = 512
case FFDHE6144:
size = 768
case FFDHE8192:
size = 1024
}
return
}
func primeFromNamedGroup(group NamedGroup) (p *big.Int) {
switch group {
case FFDHE2048:
p = finiteFieldPrime2048
case FFDHE3072:
p = finiteFieldPrime3072
case FFDHE4096:
p = finiteFieldPrime4096
case FFDHE6144:
p = finiteFieldPrime6144
case FFDHE8192:
p = finiteFieldPrime8192
}
return
}
func schemeValidForKey(alg SignatureScheme, key crypto.Signer) bool {
sigType := sigMap[alg]
switch key.(type) {
case *rsa.PrivateKey:
return sigType == signatureAlgorithmRSA_PKCS1 || sigType == signatureAlgorithmRSA_PSS
case *ecdsa.PrivateKey:
return sigType == signatureAlgorithmECDSA
default:
return false
}
}
func ffdheKeyShareFromPrime(p *big.Int) (priv, pub *big.Int, err error) {
primeLen := len(p.Bytes())
for {
// g = 2 for all ffdhe groups
priv, err = rand.Int(prng, p)
if err != nil {
return
}
pub = big.NewInt(0)
pub.Exp(big.NewInt(2), priv, p)
if len(pub.Bytes()) == primeLen {
return
}
}
}
func newKeyShare(group NamedGroup) (pub []byte, priv []byte, err error) {
switch group {
case P256, P384, P521:
var x, y *big.Int
crv := curveFromNamedGroup(group)
priv, x, y, err = elliptic.GenerateKey(crv, prng)
if err != nil {
return
}
pub = elliptic.Marshal(crv, x, y)
return
case FFDHE2048, FFDHE3072, FFDHE4096, FFDHE6144, FFDHE8192:
p := primeFromNamedGroup(group)
x, X, err2 := ffdheKeyShareFromPrime(p)
if err2 != nil {
err = err2
return
}
priv = x.Bytes()
pubBytes := X.Bytes()
numBytes := keyExchangeSizeFromNamedGroup(group)
pub = make([]byte, numBytes)
copy(pub[numBytes-len(pubBytes):], pubBytes)
return
case X25519:
var private, public [32]byte
_, err = prng.Read(private[:])
if err != nil {
return
}
curve25519.ScalarBaseMult(&public, &private)
priv = private[:]
pub = public[:]
return
default:
return nil, nil, fmt.Errorf("tls.newkeyshare: Unsupported group %v", group)
}
}
func keyAgreement(group NamedGroup, pub []byte, priv []byte) ([]byte, error) {
switch group {
case P256, P384, P521:
if len(pub) != keyExchangeSizeFromNamedGroup(group) {
return nil, fmt.Errorf("tls.keyagreement: Wrong public key size")
}
crv := curveFromNamedGroup(group)
pubX, pubY := elliptic.Unmarshal(crv, pub)
x, _ := crv.Params().ScalarMult(pubX, pubY, priv)
xBytes := x.Bytes()
numBytes := len(crv.Params().P.Bytes())
ret := make([]byte, numBytes)
copy(ret[numBytes-len(xBytes):], xBytes)
return ret, nil
case FFDHE2048, FFDHE3072, FFDHE4096, FFDHE6144, FFDHE8192:
numBytes := keyExchangeSizeFromNamedGroup(group)
if len(pub) != numBytes {
return nil, fmt.Errorf("tls.keyagreement: Wrong public key size")
}
p := primeFromNamedGroup(group)
x := big.NewInt(0).SetBytes(priv)
Y := big.NewInt(0).SetBytes(pub)
ZBytes := big.NewInt(0).Exp(Y, x, p).Bytes()
ret := make([]byte, numBytes)
copy(ret[numBytes-len(ZBytes):], ZBytes)
return ret, nil
case X25519:
if len(pub) != keyExchangeSizeFromNamedGroup(group) {
return nil, fmt.Errorf("tls.keyagreement: Wrong public key size")
}
var private, public, ret [32]byte
copy(private[:], priv)
copy(public[:], pub)
curve25519.ScalarMult(&ret, &private, &public)
return ret[:], nil
default:
return nil, fmt.Errorf("tls.keyagreement: Unsupported group %v", group)
}
}
func newSigningKey(sig SignatureScheme) (crypto.Signer, error) {
switch sig {
case RSA_PKCS1_SHA1, RSA_PKCS1_SHA256,
RSA_PKCS1_SHA384, RSA_PKCS1_SHA512,
RSA_PSS_SHA256, RSA_PSS_SHA384,
RSA_PSS_SHA512:
return rsa.GenerateKey(prng, defaultRSAKeySize)
case ECDSA_P256_SHA256:
return ecdsa.GenerateKey(elliptic.P256(), prng)
case ECDSA_P384_SHA384:
return ecdsa.GenerateKey(elliptic.P384(), prng)
case ECDSA_P521_SHA512:
return ecdsa.GenerateKey(elliptic.P521(), prng)
default:
return nil, fmt.Errorf("tls.newsigningkey: Unsupported signature algorithm [%04x]", sig)
}
}
func newSelfSigned(name string, alg SignatureScheme, priv crypto.Signer) (*x509.Certificate, error) {
sigAlg, ok := x509AlgMap[alg]
if !ok {
return nil, fmt.Errorf("tls.selfsigned: Unknown signature algorithm [%04x]", alg)
}
if len(name) == 0 {
return nil, fmt.Errorf("tls.selfsigned: No name provided")
}
serial, err := rand.Int(rand.Reader, big.NewInt(0xA0A0A0A0))
if err != nil {
return nil, err
}
template := &x509.Certificate{
SerialNumber: serial,
NotBefore: time.Now(),
NotAfter: time.Now().AddDate(0, 0, 1),
SignatureAlgorithm: sigAlg,
Subject: pkix.Name{CommonName: name},
DNSNames: []string{name},
KeyUsage: x509.KeyUsageDigitalSignature | x509.KeyUsageKeyAgreement | x509.KeyUsageKeyEncipherment,
ExtKeyUsage: []x509.ExtKeyUsage{x509.ExtKeyUsageServerAuth},
}
der, err := x509.CreateCertificate(prng, template, template, priv.Public(), priv)
if err != nil {
return nil, err
}
// It is safe to ignore the error here because we're parsing known-good data
cert, _ := x509.ParseCertificate(der)
return cert, nil
}
// XXX(rlb): Copied from crypto/x509
type ecdsaSignature struct {
R, S *big.Int
}
func sign(alg SignatureScheme, privateKey crypto.Signer, sigInput []byte) ([]byte, error) {
var opts crypto.SignerOpts
hash := hashMap[alg]
if hash == crypto.SHA1 {
return nil, fmt.Errorf("tls.crypt.sign: Use of SHA-1 is forbidden")
}
sigType := sigMap[alg]
var realInput []byte
switch key := privateKey.(type) {
case *rsa.PrivateKey:
switch {
case allowPKCS1 && sigType == signatureAlgorithmRSA_PKCS1:
logf(logTypeCrypto, "signing with PKCS1, hashSize=[%d]", hash.Size())
opts = hash
case !allowPKCS1 && sigType == signatureAlgorithmRSA_PKCS1:
fallthrough
case sigType == signatureAlgorithmRSA_PSS:
logf(logTypeCrypto, "signing with PSS, hashSize=[%d]", hash.Size())
opts = &rsa.PSSOptions{SaltLength: hash.Size(), Hash: hash}
default:
return nil, fmt.Errorf("tls.crypto.sign: Unsupported algorithm for RSA key")
}
h := hash.New()
h.Write(sigInput)
realInput = h.Sum(nil)
case *ecdsa.PrivateKey:
if sigType != signatureAlgorithmECDSA {
return nil, fmt.Errorf("tls.crypto.sign: Unsupported algorithm for ECDSA key")
}
algGroup := curveMap[alg]
keyGroup := namedGroupFromECDSAKey(key.Public().(*ecdsa.PublicKey))
if algGroup != keyGroup {
return nil, fmt.Errorf("tls.crypto.sign: Unsupported hash/curve combination")
}
h := hash.New()
h.Write(sigInput)
realInput = h.Sum(nil)
default:
return nil, fmt.Errorf("tls.crypto.sign: Unsupported private key type")
}
sig, err := privateKey.Sign(prng, realInput, opts)
logf(logTypeCrypto, "signature: %x", sig)
return sig, err
}
func verify(alg SignatureScheme, publicKey crypto.PublicKey, sigInput []byte, sig []byte) error {
hash := hashMap[alg]
if hash == crypto.SHA1 {
return fmt.Errorf("tls.crypt.sign: Use of SHA-1 is forbidden")
}
sigType := sigMap[alg]
switch pub := publicKey.(type) {
case *rsa.PublicKey:
switch {
case allowPKCS1 && sigType == signatureAlgorithmRSA_PKCS1:
logf(logTypeCrypto, "verifying with PKCS1, hashSize=[%d]", hash.Size())
h := hash.New()
h.Write(sigInput)
realInput := h.Sum(nil)
return rsa.VerifyPKCS1v15(pub, hash, realInput, sig)
case !allowPKCS1 && sigType == signatureAlgorithmRSA_PKCS1:
fallthrough
case sigType == signatureAlgorithmRSA_PSS:
logf(logTypeCrypto, "verifying with PSS, hashSize=[%d]", hash.Size())
opts := &rsa.PSSOptions{SaltLength: hash.Size(), Hash: hash}
h := hash.New()
h.Write(sigInput)
realInput := h.Sum(nil)
return rsa.VerifyPSS(pub, hash, realInput, sig, opts)
default:
return fmt.Errorf("tls.verify: Unsupported algorithm for RSA key")
}
case *ecdsa.PublicKey:
if sigType != signatureAlgorithmECDSA {
return fmt.Errorf("tls.verify: Unsupported algorithm for ECDSA key")
}
if curveMap[alg] != namedGroupFromECDSAKey(pub) {
return fmt.Errorf("tls.verify: Unsupported curve for ECDSA key")
}
ecdsaSig := new(ecdsaSignature)
if rest, err := asn1.Unmarshal(sig, ecdsaSig); err != nil {
return err
} else if len(rest) != 0 {
return fmt.Errorf("tls.verify: trailing data after ECDSA signature")
}
if ecdsaSig.R.Sign() <= 0 || ecdsaSig.S.Sign() <= 0 {
return fmt.Errorf("tls.verify: ECDSA signature contained zero or negative values")
}
h := hash.New()
h.Write(sigInput)
realInput := h.Sum(nil)
if !ecdsa.Verify(pub, realInput, ecdsaSig.R, ecdsaSig.S) {
return fmt.Errorf("tls.verify: ECDSA verification failure")
}
return nil
default:
return fmt.Errorf("tls.verify: Unsupported key type")
}
}
// 0
// |
// v
// PSK -> HKDF-Extract = Early Secret
// |
// +-----> Derive-Secret(.,
// | "ext binder" |
// | "res binder",
// | "")
// | = binder_key
// |
// +-----> Derive-Secret(., "c e traffic",
// | ClientHello)
// | = client_early_traffic_secret
// |
// +-----> Derive-Secret(., "e exp master",
// | ClientHello)
// | = early_exporter_master_secret
// v
// Derive-Secret(., "derived", "")
// |
// v
// (EC)DHE -> HKDF-Extract = Handshake Secret
// |
// +-----> Derive-Secret(., "c hs traffic",
// | ClientHello...ServerHello)
// | = client_handshake_traffic_secret
// |
// +-----> Derive-Secret(., "s hs traffic",
// | ClientHello...ServerHello)
// | = server_handshake_traffic_secret
// v
// Derive-Secret(., "derived", "")
// |
// v
// 0 -> HKDF-Extract = Master Secret
// |
// +-----> Derive-Secret(., "c ap traffic",
// | ClientHello...server Finished)
// | = client_application_traffic_secret_0
// |
// +-----> Derive-Secret(., "s ap traffic",
// | ClientHello...server Finished)
// | = server_application_traffic_secret_0
// |
// +-----> Derive-Secret(., "exp master",
// | ClientHello...server Finished)
// | = exporter_master_secret
// |
// +-----> Derive-Secret(., "res master",
// ClientHello...client Finished)
// = resumption_master_secret
// From RFC 5869
// PRK = HMAC-Hash(salt, IKM)
func HkdfExtract(hash crypto.Hash, saltIn, input []byte) []byte {
salt := saltIn
// if [salt is] not provided, it is set to a string of HashLen zeros
if salt == nil {
salt = bytes.Repeat([]byte{0}, hash.Size())
}
h := hmac.New(hash.New, salt)
h.Write(input)
out := h.Sum(nil)
logf(logTypeCrypto, "HKDF Extract:\n")
logf(logTypeCrypto, "Salt [%d]: %x\n", len(salt), salt)
logf(logTypeCrypto, "Input [%d]: %x\n", len(input), input)
logf(logTypeCrypto, "Output [%d]: %x\n", len(out), out)
return out
}
const (
labelExternalBinder = "ext binder"
labelResumptionBinder = "res binder"
labelEarlyTrafficSecret = "c e traffic"
labelEarlyExporterSecret = "e exp master"
labelClientHandshakeTrafficSecret = "c hs traffic"
labelServerHandshakeTrafficSecret = "s hs traffic"
labelClientApplicationTrafficSecret = "c ap traffic"
labelServerApplicationTrafficSecret = "s ap traffic"
labelExporterSecret = "exp master"
labelResumptionSecret = "res master"
labelDerived = "derived"
labelFinished = "finished"
labelResumption = "resumption"
)
// struct HkdfLabel {
// uint16 length;
// opaque label<9..255>;
// opaque hash_value<0..255>;
// };
func hkdfEncodeLabel(labelIn string, hashValue []byte, outLen int) []byte {
label := "tls13 " + labelIn
labelLen := len(label)
hashLen := len(hashValue)
hkdfLabel := make([]byte, 2+1+labelLen+1+hashLen)
hkdfLabel[0] = byte(outLen >> 8)
hkdfLabel[1] = byte(outLen)
hkdfLabel[2] = byte(labelLen)
copy(hkdfLabel[3:3+labelLen], []byte(label))
hkdfLabel[3+labelLen] = byte(hashLen)
copy(hkdfLabel[3+labelLen+1:], hashValue)
return hkdfLabel
}
func HkdfExpand(hash crypto.Hash, prk, info []byte, outLen int) []byte {
out := []byte{}
T := []byte{}
i := byte(1)
for len(out) < outLen {
block := append(T, info...)
block = append(block, i)
h := hmac.New(hash.New, prk)
h.Write(block)
T = h.Sum(nil)
out = append(out, T...)
i++
}
return out[:outLen]
}
func HkdfExpandLabel(hash crypto.Hash, secret []byte, label string, hashValue []byte, outLen int) []byte {
info := hkdfEncodeLabel(label, hashValue, outLen)
derived := HkdfExpand(hash, secret, info, outLen)
logf(logTypeCrypto, "HKDF Expand: label=[tls13 ] + '%s',requested length=%d\n", label, outLen)
logf(logTypeCrypto, "PRK [%d]: %x\n", len(secret), secret)
logf(logTypeCrypto, "Hash [%d]: %x\n", len(hashValue), hashValue)
logf(logTypeCrypto, "Info [%d]: %x\n", len(info), info)
logf(logTypeCrypto, "Derived key [%d]: %x\n", len(derived), derived)
return derived
}
func deriveSecret(params CipherSuiteParams, secret []byte, label string, messageHash []byte) []byte {
return HkdfExpandLabel(params.Hash, secret, label, messageHash, params.Hash.Size())
}
func computeFinishedData(params CipherSuiteParams, baseKey []byte, input []byte) []byte {
macKey := HkdfExpandLabel(params.Hash, baseKey, labelFinished, []byte{}, params.Hash.Size())
mac := hmac.New(params.Hash.New, macKey)
mac.Write(input)
return mac.Sum(nil)
}
type keySet struct {
cipher aeadFactory
key []byte
iv []byte
}
func makeTrafficKeys(params CipherSuiteParams, secret []byte) keySet {
logf(logTypeCrypto, "making traffic keys: secret=%x", secret)
return keySet{
cipher: params.Cipher,
key: HkdfExpandLabel(params.Hash, secret, "key", []byte{}, params.KeyLen),
iv: HkdfExpandLabel(params.Hash, secret, "iv", []byte{}, params.IvLen),
}
}