0
Fork 0
mirror of https://github.com/caddyserver/caddy.git synced 2025-01-13 22:51:08 -05:00
caddy/vendor/github.com/lucas-clemente/quic-go/session.go
2019-01-16 21:38:10 -07:00

1267 lines
39 KiB
Go

package quic
import (
"context"
"crypto/rand"
"crypto/tls"
"errors"
"fmt"
"net"
"sync"
"time"
"github.com/bifurcation/mint"
"github.com/lucas-clemente/quic-go/internal/ackhandler"
"github.com/lucas-clemente/quic-go/internal/congestion"
"github.com/lucas-clemente/quic-go/internal/flowcontrol"
"github.com/lucas-clemente/quic-go/internal/handshake"
"github.com/lucas-clemente/quic-go/internal/protocol"
"github.com/lucas-clemente/quic-go/internal/utils"
"github.com/lucas-clemente/quic-go/internal/wire"
"github.com/lucas-clemente/quic-go/qerr"
)
type unpacker interface {
Unpack(headerBinary []byte, hdr *wire.Header, data []byte) (*unpackedPacket, error)
}
type streamGetter interface {
GetOrOpenReceiveStream(protocol.StreamID) (receiveStreamI, error)
GetOrOpenSendStream(protocol.StreamID) (sendStreamI, error)
}
type streamManager interface {
GetOrOpenSendStream(protocol.StreamID) (sendStreamI, error)
GetOrOpenReceiveStream(protocol.StreamID) (receiveStreamI, error)
OpenStream() (Stream, error)
OpenUniStream() (SendStream, error)
OpenStreamSync() (Stream, error)
OpenUniStreamSync() (SendStream, error)
AcceptStream() (Stream, error)
AcceptUniStream() (ReceiveStream, error)
DeleteStream(protocol.StreamID) error
UpdateLimits(*handshake.TransportParameters)
HandleMaxStreamIDFrame(*wire.MaxStreamIDFrame) error
CloseWithError(error)
}
type cryptoStreamHandler interface {
HandleCryptoStream() error
ConnectionState() handshake.ConnectionState
}
type divNonceSetter interface {
SetDiversificationNonce([]byte) error
}
type receivedPacket struct {
remoteAddr net.Addr
header *wire.Header
data []byte
rcvTime time.Time
}
var (
newCryptoSetup = handshake.NewCryptoSetup
newCryptoSetupClient = handshake.NewCryptoSetupClient
)
type closeError struct {
err error
remote bool
sendClose bool
}
// A Session is a QUIC session
type session struct {
sessionRunner sessionRunner
destConnID protocol.ConnectionID
srcConnID protocol.ConnectionID
perspective protocol.Perspective
version protocol.VersionNumber
config *Config
conn connection
streamsMap streamManager
cryptoStream cryptoStream
rttStats *congestion.RTTStats
sentPacketHandler ackhandler.SentPacketHandler
receivedPacketHandler ackhandler.ReceivedPacketHandler
framer *framer
windowUpdateQueue *windowUpdateQueue
connFlowController flowcontrol.ConnectionFlowController
unpacker unpacker
packer packer
cryptoStreamHandler cryptoStreamHandler
receivedPackets chan *receivedPacket
sendingScheduled chan struct{}
// closeChan is used to notify the run loop that it should terminate.
closeChan chan closeError
closeOnce sync.Once
ctx context.Context
ctxCancel context.CancelFunc
// when we receive too many undecryptable packets during the handshake, we send a Public reset
// but only after a time of protocol.PublicResetTimeout has passed
undecryptablePackets []*receivedPacket
receivedTooManyUndecrytablePacketsTime time.Time
// this channel is passed to the CryptoSetup and receives the transport parameters, as soon as the peer sends them
paramsChan <-chan handshake.TransportParameters
// the handshakeEvent channel is passed to the CryptoSetup.
// It receives when it makes sense to try decrypting undecryptable packets.
handshakeEvent <-chan struct{}
handshakeComplete bool
receivedFirstPacket bool // since packet numbers start at 0, we can't use largestRcvdPacketNumber != 0 for this
receivedFirstForwardSecurePacket bool
lastRcvdPacketNumber protocol.PacketNumber
// Used to calculate the next packet number from the truncated wire
// representation, and sent back in public reset packets
largestRcvdPacketNumber protocol.PacketNumber
sessionCreationTime time.Time
lastNetworkActivityTime time.Time
// pacingDeadline is the time when the next packet should be sent
pacingDeadline time.Time
peerParams *handshake.TransportParameters
timer *utils.Timer
// keepAlivePingSent stores whether a Ping frame was sent to the peer or not
// it is reset as soon as we receive a packet from the peer
keepAlivePingSent bool
logger utils.Logger
}
var _ Session = &session{}
var _ streamSender = &session{}
// newSession makes a new session
func newSession(
conn connection,
sessionRunner sessionRunner,
v protocol.VersionNumber,
destConnID protocol.ConnectionID,
srcConnID protocol.ConnectionID,
scfg *handshake.ServerConfig,
tlsConf *tls.Config,
config *Config,
logger utils.Logger,
) (quicSession, error) {
logger.Debugf("Creating new session. Destination Connection ID: %s, Source Connection ID: %s", destConnID, srcConnID)
paramsChan := make(chan handshake.TransportParameters)
handshakeEvent := make(chan struct{}, 1)
s := &session{
conn: conn,
sessionRunner: sessionRunner,
srcConnID: srcConnID,
destConnID: destConnID,
perspective: protocol.PerspectiveServer,
version: v,
config: config,
handshakeEvent: handshakeEvent,
paramsChan: paramsChan,
logger: logger,
}
s.preSetup()
transportParams := &handshake.TransportParameters{
StreamFlowControlWindow: protocol.ReceiveStreamFlowControlWindow,
ConnectionFlowControlWindow: protocol.ReceiveConnectionFlowControlWindow,
MaxStreams: uint32(s.config.MaxIncomingStreams),
IdleTimeout: s.config.IdleTimeout,
}
divNonce := make([]byte, 32)
if _, err := rand.Read(divNonce); err != nil {
return nil, err
}
cs, err := newCryptoSetup(
s.cryptoStream,
srcConnID,
s.conn.RemoteAddr(),
s.version,
divNonce,
scfg,
transportParams,
s.config.Versions,
s.config.AcceptCookie,
paramsChan,
handshakeEvent,
s.logger,
)
if err != nil {
return nil, err
}
s.cryptoStreamHandler = cs
s.unpacker = newPacketUnpackerGQUIC(cs, s.version)
s.streamsMap = newStreamsMapLegacy(s.newStream, s.config.MaxIncomingStreams, s.perspective)
s.framer = newFramer(s.cryptoStream, s.streamsMap, s.version)
s.packer = newPacketPackerLegacy(
destConnID,
srcConnID,
s.sentPacketHandler.GetPacketNumberLen,
s.RemoteAddr(),
divNonce,
s.cryptoStream,
cs,
s.framer,
sentAndReceivedPacketManager{s.sentPacketHandler, s.receivedPacketHandler},
s.perspective,
s.version,
)
return s, s.postSetup()
}
// declare this as a variable, so that we can it mock it in the tests
var newClientSession = func(
conn connection,
sessionRunner sessionRunner,
v protocol.VersionNumber,
destConnID protocol.ConnectionID,
srcConnID protocol.ConnectionID,
tlsConf *tls.Config,
config *Config,
initialVersion protocol.VersionNumber,
negotiatedVersions []protocol.VersionNumber, // needed for validation of the GQUIC version negotiation
logger utils.Logger,
) (quicSession, error) {
logger.Debugf("Creating new session. Destination Connection ID: %s, Source Connection ID: %s", destConnID, srcConnID)
paramsChan := make(chan handshake.TransportParameters)
handshakeEvent := make(chan struct{}, 1)
s := &session{
conn: conn,
sessionRunner: sessionRunner,
srcConnID: srcConnID,
destConnID: destConnID,
perspective: protocol.PerspectiveClient,
version: v,
config: config,
handshakeEvent: handshakeEvent,
paramsChan: paramsChan,
logger: logger,
}
s.preSetup()
transportParams := &handshake.TransportParameters{
StreamFlowControlWindow: protocol.ReceiveStreamFlowControlWindow,
ConnectionFlowControlWindow: protocol.ReceiveConnectionFlowControlWindow,
MaxStreams: uint32(s.config.MaxIncomingStreams),
IdleTimeout: s.config.IdleTimeout,
OmitConnectionID: s.config.RequestConnectionIDOmission,
}
cs, err := newCryptoSetupClient(
s.cryptoStream,
destConnID,
s.version,
tlsConf,
transportParams,
paramsChan,
handshakeEvent,
initialVersion,
negotiatedVersions,
s.logger,
)
if err != nil {
return nil, err
}
s.cryptoStreamHandler = cs
s.unpacker = newPacketUnpackerGQUIC(cs, s.version)
s.streamsMap = newStreamsMapLegacy(s.newStream, s.config.MaxIncomingStreams, s.perspective)
s.framer = newFramer(s.cryptoStream, s.streamsMap, s.version)
s.packer = newPacketPackerLegacy(
destConnID,
srcConnID,
s.sentPacketHandler.GetPacketNumberLen,
s.RemoteAddr(),
nil, // no diversification nonce
s.cryptoStream,
cs,
s.framer,
sentAndReceivedPacketManager{s.sentPacketHandler, s.receivedPacketHandler},
s.perspective,
s.version,
)
return s, s.postSetup()
}
func newTLSServerSession(
conn connection,
runner sessionRunner,
origConnID protocol.ConnectionID,
destConnID protocol.ConnectionID,
srcConnID protocol.ConnectionID,
initialPacketNumber protocol.PacketNumber,
config *Config,
mintConf *mint.Config,
peerParams *handshake.TransportParameters,
logger utils.Logger,
v protocol.VersionNumber,
) (quicSession, error) {
handshakeEvent := make(chan struct{}, 1)
s := &session{
conn: conn,
sessionRunner: runner,
config: config,
srcConnID: srcConnID,
destConnID: destConnID,
perspective: protocol.PerspectiveServer,
version: v,
handshakeEvent: handshakeEvent,
logger: logger,
}
s.preSetup()
cs, err := handshake.NewCryptoSetupTLSServer(
s.cryptoStream,
origConnID,
mintConf,
handshakeEvent,
v,
)
if err != nil {
return nil, err
}
s.cryptoStreamHandler = cs
s.streamsMap = newStreamsMap(s, s.newFlowController, s.config.MaxIncomingStreams, s.config.MaxIncomingUniStreams, s.perspective, s.version)
s.framer = newFramer(s.cryptoStream, s.streamsMap, s.version)
s.packer = newPacketPacker(
s.destConnID,
s.srcConnID,
initialPacketNumber,
s.sentPacketHandler.GetPacketNumberLen,
s.RemoteAddr(),
nil, // no token
s.cryptoStream,
cs,
s.framer,
sentAndReceivedPacketManager{s.sentPacketHandler, s.receivedPacketHandler},
s.perspective,
s.version,
)
if err := s.postSetup(); err != nil {
return nil, err
}
s.peerParams = peerParams
s.processTransportParameters(peerParams)
s.unpacker = newPacketUnpacker(cs, s.version)
return s, nil
}
// declare this as a variable, such that we can it mock it in the tests
var newTLSClientSession = func(
conn connection,
runner sessionRunner,
token []byte,
destConnID protocol.ConnectionID,
srcConnID protocol.ConnectionID,
conf *Config,
mintConf *mint.Config,
paramsChan <-chan handshake.TransportParameters,
initialPacketNumber protocol.PacketNumber,
logger utils.Logger,
v protocol.VersionNumber,
) (quicSession, error) {
handshakeEvent := make(chan struct{}, 1)
s := &session{
conn: conn,
sessionRunner: runner,
config: conf,
srcConnID: srcConnID,
destConnID: destConnID,
perspective: protocol.PerspectiveClient,
version: v,
handshakeEvent: handshakeEvent,
paramsChan: paramsChan,
logger: logger,
}
s.preSetup()
cs, err := handshake.NewCryptoSetupTLSClient(
s.cryptoStream,
s.destConnID,
mintConf,
handshakeEvent,
v,
)
if err != nil {
return nil, err
}
s.cryptoStreamHandler = cs
s.unpacker = newPacketUnpacker(cs, s.version)
s.streamsMap = newStreamsMap(s, s.newFlowController, s.config.MaxIncomingStreams, s.config.MaxIncomingUniStreams, s.perspective, s.version)
s.framer = newFramer(s.cryptoStream, s.streamsMap, s.version)
s.packer = newPacketPacker(
s.destConnID,
s.srcConnID,
initialPacketNumber,
s.sentPacketHandler.GetPacketNumberLen,
s.RemoteAddr(),
token,
s.cryptoStream,
cs,
s.framer,
sentAndReceivedPacketManager{s.sentPacketHandler, s.receivedPacketHandler},
s.perspective,
s.version,
)
return s, s.postSetup()
}
func (s *session) preSetup() {
s.rttStats = &congestion.RTTStats{}
s.sentPacketHandler = ackhandler.NewSentPacketHandler(s.rttStats, s.logger, s.version)
s.receivedPacketHandler = ackhandler.NewReceivedPacketHandler(s.rttStats, s.logger, s.version)
s.connFlowController = flowcontrol.NewConnectionFlowController(
protocol.ReceiveConnectionFlowControlWindow,
protocol.ByteCount(s.config.MaxReceiveConnectionFlowControlWindow),
s.onHasConnectionWindowUpdate,
s.rttStats,
s.logger,
)
s.cryptoStream = s.newCryptoStream()
}
func (s *session) postSetup() error {
s.receivedPackets = make(chan *receivedPacket, protocol.MaxSessionUnprocessedPackets)
s.closeChan = make(chan closeError, 1)
s.sendingScheduled = make(chan struct{}, 1)
s.undecryptablePackets = make([]*receivedPacket, 0, protocol.MaxUndecryptablePackets)
s.ctx, s.ctxCancel = context.WithCancel(context.Background())
s.timer = utils.NewTimer()
now := time.Now()
s.lastNetworkActivityTime = now
s.sessionCreationTime = now
s.windowUpdateQueue = newWindowUpdateQueue(s.streamsMap, s.connFlowController, s.framer.QueueControlFrame)
return nil
}
// run the session main loop
func (s *session) run() error {
defer s.ctxCancel()
go func() {
if err := s.cryptoStreamHandler.HandleCryptoStream(); err != nil {
s.closeLocal(err)
}
}()
var closeErr closeError
runLoop:
for {
// Close immediately if requested
select {
case closeErr = <-s.closeChan:
break runLoop
case _, ok := <-s.handshakeEvent:
// when the handshake is completed, the channel will be closed
s.handleHandshakeEvent(!ok)
default:
}
s.maybeResetTimer()
select {
case closeErr = <-s.closeChan:
break runLoop
case <-s.timer.Chan():
s.timer.SetRead()
// We do all the interesting stuff after the switch statement, so
// nothing to see here.
case <-s.sendingScheduled:
// We do all the interesting stuff after the switch statement, so
// nothing to see here.
case p := <-s.receivedPackets:
err := s.handlePacketImpl(p)
if err != nil {
if qErr, ok := err.(*qerr.QuicError); ok && qErr.ErrorCode == qerr.DecryptionFailure {
s.tryQueueingUndecryptablePacket(p)
continue
}
s.closeLocal(err)
continue
}
// This is a bit unclean, but works properly, since the packet always
// begins with the public header and we never copy it.
putPacketBuffer(&p.header.Raw)
case p := <-s.paramsChan:
s.processTransportParameters(&p)
continue
case _, ok := <-s.handshakeEvent:
// when the handshake is completed, the channel will be closed
s.handleHandshakeEvent(!ok)
}
now := time.Now()
if timeout := s.sentPacketHandler.GetAlarmTimeout(); !timeout.IsZero() && timeout.Before(now) {
// This could cause packets to be retransmitted.
// Check it before trying to send packets.
if err := s.sentPacketHandler.OnAlarm(); err != nil {
s.closeLocal(err)
}
}
var pacingDeadline time.Time
if s.pacingDeadline.IsZero() { // the timer didn't have a pacing deadline set
pacingDeadline = s.sentPacketHandler.TimeUntilSend()
}
if s.config.KeepAlive && !s.keepAlivePingSent && s.handshakeComplete && time.Since(s.lastNetworkActivityTime) >= s.peerParams.IdleTimeout/2 {
// send a PING frame since there is no activity in the session
s.logger.Debugf("Sending a keep-alive ping to keep the connection alive.")
s.framer.QueueControlFrame(&wire.PingFrame{})
s.keepAlivePingSent = true
} else if !pacingDeadline.IsZero() && now.Before(pacingDeadline) {
// If we get to this point before the pacing deadline, we should wait until that deadline.
// This can happen when scheduleSending is called, or a packet is received.
// Set the timer and restart the run loop.
s.pacingDeadline = pacingDeadline
continue
}
if !s.receivedTooManyUndecrytablePacketsTime.IsZero() && s.receivedTooManyUndecrytablePacketsTime.Add(protocol.PublicResetTimeout).Before(now) && len(s.undecryptablePackets) != 0 {
s.closeLocal(qerr.Error(qerr.DecryptionFailure, "too many undecryptable packets received"))
continue
}
if !s.handshakeComplete && now.Sub(s.sessionCreationTime) >= s.config.HandshakeTimeout {
s.closeLocal(qerr.Error(qerr.HandshakeTimeout, "Crypto handshake did not complete in time."))
continue
}
if s.handshakeComplete && now.Sub(s.lastNetworkActivityTime) >= s.config.IdleTimeout {
s.closeLocal(qerr.Error(qerr.NetworkIdleTimeout, "No recent network activity."))
continue
}
if err := s.sendPackets(); err != nil {
s.closeLocal(err)
}
}
if err := s.handleCloseError(closeErr); err != nil {
s.logger.Infof("Handling close error failed: %s", err)
}
s.logger.Infof("Connection %s closed.", s.srcConnID)
s.sessionRunner.removeConnectionID(s.srcConnID)
return closeErr.err
}
func (s *session) Context() context.Context {
return s.ctx
}
func (s *session) ConnectionState() ConnectionState {
return s.cryptoStreamHandler.ConnectionState()
}
func (s *session) maybeResetTimer() {
var deadline time.Time
if s.config.KeepAlive && s.handshakeComplete && !s.keepAlivePingSent {
deadline = s.lastNetworkActivityTime.Add(s.peerParams.IdleTimeout / 2)
} else {
deadline = s.lastNetworkActivityTime.Add(s.config.IdleTimeout)
}
if ackAlarm := s.receivedPacketHandler.GetAlarmTimeout(); !ackAlarm.IsZero() {
deadline = utils.MinTime(deadline, ackAlarm)
}
if lossTime := s.sentPacketHandler.GetAlarmTimeout(); !lossTime.IsZero() {
deadline = utils.MinTime(deadline, lossTime)
}
if !s.handshakeComplete {
handshakeDeadline := s.sessionCreationTime.Add(s.config.HandshakeTimeout)
deadline = utils.MinTime(deadline, handshakeDeadline)
}
if !s.receivedTooManyUndecrytablePacketsTime.IsZero() {
deadline = utils.MinTime(deadline, s.receivedTooManyUndecrytablePacketsTime.Add(protocol.PublicResetTimeout))
}
if !s.pacingDeadline.IsZero() {
deadline = utils.MinTime(deadline, s.pacingDeadline)
}
s.timer.Reset(deadline)
}
func (s *session) handleHandshakeEvent(completed bool) {
if !completed {
s.tryDecryptingQueuedPackets()
return
}
s.handshakeComplete = true
s.handshakeEvent = nil // prevent this case from ever being selected again
s.sessionRunner.onHandshakeComplete(s)
// In gQUIC, the server completes the handshake first (after sending the SHLO).
// In TLS 1.3, the client completes the handshake first (after sending the CFIN).
// We need to make sure they learn about the peer completing the handshake,
// in order to stop retransmitting handshake packets.
// They will stop retransmitting handshake packets when receiving the first forward-secure packet.
// We need to make sure that a retransmittable forward-secure packet is sent,
// independent from the application protocol.
if (!s.version.UsesTLS() && s.perspective == protocol.PerspectiveClient) ||
(s.version.UsesTLS() && s.perspective == protocol.PerspectiveServer) {
s.queueControlFrame(&wire.PingFrame{})
s.sentPacketHandler.SetHandshakeComplete()
}
}
func (s *session) handlePacketImpl(p *receivedPacket) error {
hdr := p.header
// The server can change the source connection ID with the first Handshake packet.
// After this, all packets with a different source connection have to be ignored.
if s.receivedFirstPacket && hdr.IsLongHeader && !hdr.SrcConnectionID.Equal(s.destConnID) {
s.logger.Debugf("Dropping packet with unexpected source connection ID: %s (expected %s)", p.header.SrcConnectionID, s.destConnID)
return nil
}
if s.perspective == protocol.PerspectiveClient {
if divNonce := p.header.DiversificationNonce; len(divNonce) > 0 {
if err := s.cryptoStreamHandler.(divNonceSetter).SetDiversificationNonce(divNonce); err != nil {
return err
}
}
}
if p.rcvTime.IsZero() {
// To simplify testing
p.rcvTime = time.Now()
}
// Calculate packet number
hdr.PacketNumber = protocol.InferPacketNumber(
hdr.PacketNumberLen,
s.largestRcvdPacketNumber,
hdr.PacketNumber,
s.version,
)
packet, err := s.unpacker.Unpack(hdr.Raw, hdr, p.data)
if s.logger.Debug() {
if err != nil {
s.logger.Debugf("<- Reading packet 0x%x (%d bytes) for connection %s", hdr.PacketNumber, len(p.data)+len(hdr.Raw), hdr.DestConnectionID)
} else {
s.logger.Debugf("<- Reading packet 0x%x (%d bytes) for connection %s, %s", hdr.PacketNumber, len(p.data)+len(hdr.Raw), hdr.DestConnectionID, packet.encryptionLevel)
}
hdr.Log(s.logger)
}
// if the decryption failed, this might be a packet sent by an attacker
if err != nil {
return err
}
// The server can change the source connection ID with the first Handshake packet.
if s.perspective == protocol.PerspectiveClient && !s.receivedFirstPacket && hdr.IsLongHeader && !hdr.SrcConnectionID.Equal(s.destConnID) {
s.logger.Debugf("Received first packet. Switching destination connection ID to: %s", hdr.SrcConnectionID)
s.destConnID = hdr.SrcConnectionID
s.packer.ChangeDestConnectionID(s.destConnID)
}
s.receivedFirstPacket = true
s.lastNetworkActivityTime = p.rcvTime
s.keepAlivePingSent = false
// In gQUIC, the server completes the handshake first (after sending the SHLO).
// In TLS 1.3, the client completes the handshake first (after sending the CFIN).
// We know that the peer completed the handshake as soon as we receive a forward-secure packet.
if (!s.version.UsesTLS() && s.perspective == protocol.PerspectiveServer) ||
(s.version.UsesTLS() && s.perspective == protocol.PerspectiveClient) {
if !s.receivedFirstForwardSecurePacket && packet.encryptionLevel == protocol.EncryptionForwardSecure {
s.receivedFirstForwardSecurePacket = true
s.sentPacketHandler.SetHandshakeComplete()
}
}
s.lastRcvdPacketNumber = hdr.PacketNumber
// Only do this after decrypting, so we are sure the packet is not attacker-controlled
s.largestRcvdPacketNumber = utils.MaxPacketNumber(s.largestRcvdPacketNumber, hdr.PacketNumber)
// If this is a Retry packet, there's no need to send an ACK.
// The session will be closed and recreated as soon as the crypto setup processed the HRR.
if hdr.Type != protocol.PacketTypeRetry {
isRetransmittable := ackhandler.HasRetransmittableFrames(packet.frames)
if err := s.receivedPacketHandler.ReceivedPacket(hdr.PacketNumber, p.rcvTime, isRetransmittable); err != nil {
return err
}
}
return s.handleFrames(packet.frames, packet.encryptionLevel)
}
func (s *session) handleFrames(fs []wire.Frame, encLevel protocol.EncryptionLevel) error {
for _, ff := range fs {
var err error
wire.LogFrame(s.logger, ff, false)
switch frame := ff.(type) {
case *wire.StreamFrame:
err = s.handleStreamFrame(frame, encLevel)
case *wire.AckFrame:
err = s.handleAckFrame(frame, encLevel)
case *wire.ConnectionCloseFrame:
s.closeRemote(qerr.Error(frame.ErrorCode, frame.ReasonPhrase))
case *wire.GoawayFrame:
err = errors.New("unimplemented: handling GOAWAY frames")
case *wire.StopWaitingFrame: // ignore STOP_WAITINGs
case *wire.RstStreamFrame:
err = s.handleRstStreamFrame(frame)
case *wire.MaxDataFrame:
s.handleMaxDataFrame(frame)
case *wire.MaxStreamDataFrame:
err = s.handleMaxStreamDataFrame(frame)
case *wire.MaxStreamIDFrame:
err = s.handleMaxStreamIDFrame(frame)
case *wire.BlockedFrame:
case *wire.StreamBlockedFrame:
case *wire.StreamIDBlockedFrame:
case *wire.StopSendingFrame:
err = s.handleStopSendingFrame(frame)
case *wire.PingFrame:
case *wire.PathChallengeFrame:
s.handlePathChallengeFrame(frame)
case *wire.PathResponseFrame:
// since we don't send PATH_CHALLENGEs, we don't expect PATH_RESPONSEs
err = errors.New("unexpected PATH_RESPONSE frame")
default:
return errors.New("Session BUG: unexpected frame type")
}
if err != nil {
return err
}
}
return nil
}
// handlePacket is called by the server with a new packet
func (s *session) handlePacket(p *receivedPacket) {
// Discard packets once the amount of queued packets is larger than
// the channel size, protocol.MaxSessionUnprocessedPackets
select {
case s.receivedPackets <- p:
default:
}
}
func (s *session) handleStreamFrame(frame *wire.StreamFrame, encLevel protocol.EncryptionLevel) error {
if frame.StreamID == s.version.CryptoStreamID() {
if frame.FinBit {
return errors.New("Received STREAM frame with FIN bit for the crypto stream")
}
return s.cryptoStream.handleStreamFrame(frame)
} else if encLevel <= protocol.EncryptionUnencrypted {
return qerr.Error(qerr.UnencryptedStreamData, fmt.Sprintf("received unencrypted stream data on stream %d", frame.StreamID))
}
str, err := s.streamsMap.GetOrOpenReceiveStream(frame.StreamID)
if err != nil {
return err
}
if str == nil {
// Stream is closed and already garbage collected
// ignore this StreamFrame
return nil
}
return str.handleStreamFrame(frame)
}
func (s *session) handleMaxDataFrame(frame *wire.MaxDataFrame) {
s.connFlowController.UpdateSendWindow(frame.ByteOffset)
}
func (s *session) handleMaxStreamDataFrame(frame *wire.MaxStreamDataFrame) error {
if frame.StreamID == s.version.CryptoStreamID() {
s.cryptoStream.handleMaxStreamDataFrame(frame)
return nil
}
str, err := s.streamsMap.GetOrOpenSendStream(frame.StreamID)
if err != nil {
return err
}
if str == nil {
// stream is closed and already garbage collected
return nil
}
str.handleMaxStreamDataFrame(frame)
return nil
}
func (s *session) handleMaxStreamIDFrame(frame *wire.MaxStreamIDFrame) error {
return s.streamsMap.HandleMaxStreamIDFrame(frame)
}
func (s *session) handleRstStreamFrame(frame *wire.RstStreamFrame) error {
if frame.StreamID == s.version.CryptoStreamID() {
return errors.New("Received RST_STREAM frame for the crypto stream")
}
str, err := s.streamsMap.GetOrOpenReceiveStream(frame.StreamID)
if err != nil {
return err
}
if str == nil {
// stream is closed and already garbage collected
return nil
}
return str.handleRstStreamFrame(frame)
}
func (s *session) handleStopSendingFrame(frame *wire.StopSendingFrame) error {
if frame.StreamID == s.version.CryptoStreamID() {
return errors.New("Received a STOP_SENDING frame for the crypto stream")
}
str, err := s.streamsMap.GetOrOpenSendStream(frame.StreamID)
if err != nil {
return err
}
if str == nil {
// stream is closed and already garbage collected
return nil
}
str.handleStopSendingFrame(frame)
return nil
}
func (s *session) handlePathChallengeFrame(frame *wire.PathChallengeFrame) {
s.queueControlFrame(&wire.PathResponseFrame{Data: frame.Data})
}
func (s *session) handleAckFrame(frame *wire.AckFrame, encLevel protocol.EncryptionLevel) error {
if err := s.sentPacketHandler.ReceivedAck(frame, s.lastRcvdPacketNumber, encLevel, s.lastNetworkActivityTime); err != nil {
return err
}
s.receivedPacketHandler.IgnoreBelow(s.sentPacketHandler.GetLowestPacketNotConfirmedAcked())
return nil
}
// closeLocal closes the session and send a CONNECTION_CLOSE containing the error
func (s *session) closeLocal(e error) {
s.closeOnce.Do(func() {
s.closeChan <- closeError{err: e, sendClose: true, remote: false}
})
}
// destroy closes the session without sending the error on the wire
func (s *session) destroy(e error) {
s.closeOnce.Do(func() {
s.closeChan <- closeError{err: e, sendClose: false, remote: false}
})
}
func (s *session) closeRemote(e error) {
s.closeOnce.Do(func() {
s.closeChan <- closeError{err: e, remote: true}
})
}
// Close the connection. It sends a qerr.PeerGoingAway.
// It waits until the run loop has stopped before returning
func (s *session) Close() error {
s.closeLocal(nil)
<-s.ctx.Done()
return nil
}
func (s *session) CloseWithError(code protocol.ApplicationErrorCode, e error) error {
s.closeLocal(qerr.Error(qerr.ErrorCode(code), e.Error()))
<-s.ctx.Done()
return nil
}
func (s *session) handleCloseError(closeErr closeError) error {
if closeErr.err == nil {
closeErr.err = qerr.PeerGoingAway
}
var quicErr *qerr.QuicError
var ok bool
if quicErr, ok = closeErr.err.(*qerr.QuicError); !ok {
quicErr = qerr.ToQuicError(closeErr.err)
}
// Don't log 'normal' reasons
if quicErr.ErrorCode == qerr.PeerGoingAway || quicErr.ErrorCode == qerr.NetworkIdleTimeout {
s.logger.Infof("Closing connection %s.", s.srcConnID)
} else {
s.logger.Errorf("Closing session with error: %s", closeErr.err.Error())
}
s.cryptoStream.closeForShutdown(quicErr)
s.streamsMap.CloseWithError(quicErr)
if !closeErr.sendClose {
return nil
}
// If this is a remote close we're done here
if closeErr.remote {
return nil
}
if quicErr.ErrorCode == qerr.DecryptionFailure ||
quicErr == handshake.ErrNSTPExperiment {
return s.sendPublicReset(s.lastRcvdPacketNumber)
}
return s.sendConnectionClose(quicErr)
}
func (s *session) processTransportParameters(params *handshake.TransportParameters) {
s.peerParams = params
s.streamsMap.UpdateLimits(params)
s.packer.HandleTransportParameters(params)
s.connFlowController.UpdateSendWindow(params.ConnectionFlowControlWindow)
// the crypto stream is the only open stream at this moment
// so we don't need to update stream flow control windows
}
func (s *session) sendPackets() error {
s.pacingDeadline = time.Time{}
sendMode := s.sentPacketHandler.SendMode()
if sendMode == ackhandler.SendNone { // shortcut: return immediately if there's nothing to send
return nil
}
numPackets := s.sentPacketHandler.ShouldSendNumPackets()
var numPacketsSent int
sendLoop:
for {
switch sendMode {
case ackhandler.SendNone:
break sendLoop
case ackhandler.SendAck:
// If we already sent packets, and the send mode switches to SendAck,
// we've just become congestion limited.
// There's no need to try to send an ACK at this moment.
if numPacketsSent > 0 {
return nil
}
// We can at most send a single ACK only packet.
// There will only be a new ACK after receiving new packets.
// SendAck is only returned when we're congestion limited, so we don't need to set the pacingt timer.
return s.maybeSendAckOnlyPacket()
case ackhandler.SendTLP, ackhandler.SendRTO:
if err := s.sendProbePacket(); err != nil {
return err
}
numPacketsSent++
case ackhandler.SendRetransmission:
sentPacket, err := s.maybeSendRetransmission()
if err != nil {
return err
}
if sentPacket {
numPacketsSent++
// This can happen if a retransmission queued, but it wasn't necessary to send it.
// e.g. when an Initial is queued, but we already received a packet from the server.
}
case ackhandler.SendAny:
sentPacket, err := s.sendPacket()
if err != nil {
return err
}
if !sentPacket {
break sendLoop
}
numPacketsSent++
default:
return fmt.Errorf("BUG: invalid send mode %d", sendMode)
}
if numPacketsSent >= numPackets {
break
}
sendMode = s.sentPacketHandler.SendMode()
}
// Only start the pacing timer if we sent as many packets as we were allowed.
// There will probably be more to send when calling sendPacket again.
if numPacketsSent == numPackets {
s.pacingDeadline = s.sentPacketHandler.TimeUntilSend()
}
return nil
}
func (s *session) maybeSendAckOnlyPacket() error {
packet, err := s.packer.MaybePackAckPacket()
if err != nil {
return err
}
if packet == nil {
return nil
}
s.sentPacketHandler.SentPacket(packet.ToAckHandlerPacket())
return s.sendPackedPacket(packet)
}
// maybeSendRetransmission sends retransmissions for at most one packet.
// It takes care that Initials aren't retransmitted, if a packet from the server was already received.
func (s *session) maybeSendRetransmission() (bool, error) {
var retransmitPacket *ackhandler.Packet
for {
retransmitPacket = s.sentPacketHandler.DequeuePacketForRetransmission()
if retransmitPacket == nil {
return false, nil
}
// Don't retransmit Initial packets if we already received a response.
// An Initial might have been retransmitted multiple times before we receive a response.
// As soon as we receive one response, we don't need to send any more Initials.
if s.receivedFirstPacket && retransmitPacket.PacketType == protocol.PacketTypeInitial {
s.logger.Debugf("Skipping retransmission of packet %d. Already received a response to an Initial.", retransmitPacket.PacketNumber)
continue
}
break
}
if retransmitPacket.EncryptionLevel != protocol.EncryptionForwardSecure {
s.logger.Debugf("Dequeueing handshake retransmission for packet 0x%x", retransmitPacket.PacketNumber)
} else {
s.logger.Debugf("Dequeueing retransmission for packet 0x%x", retransmitPacket.PacketNumber)
}
packets, err := s.packer.PackRetransmission(retransmitPacket)
if err != nil {
return false, err
}
ackhandlerPackets := make([]*ackhandler.Packet, len(packets))
for i, packet := range packets {
ackhandlerPackets[i] = packet.ToAckHandlerPacket()
}
s.sentPacketHandler.SentPacketsAsRetransmission(ackhandlerPackets, retransmitPacket.PacketNumber)
for _, packet := range packets {
if err := s.sendPackedPacket(packet); err != nil {
return false, err
}
}
return true, nil
}
func (s *session) sendProbePacket() error {
p, err := s.sentPacketHandler.DequeueProbePacket()
if err != nil {
return err
}
s.logger.Debugf("Sending a retransmission for %#x as a probe packet.", p.PacketNumber)
packets, err := s.packer.PackRetransmission(p)
if err != nil {
return err
}
ackhandlerPackets := make([]*ackhandler.Packet, len(packets))
for i, packet := range packets {
ackhandlerPackets[i] = packet.ToAckHandlerPacket()
}
s.sentPacketHandler.SentPacketsAsRetransmission(ackhandlerPackets, p.PacketNumber)
for _, packet := range packets {
if err := s.sendPackedPacket(packet); err != nil {
return err
}
}
return nil
}
func (s *session) sendPacket() (bool, error) {
if isBlocked, offset := s.connFlowController.IsNewlyBlocked(); isBlocked {
s.framer.QueueControlFrame(&wire.BlockedFrame{Offset: offset})
}
s.windowUpdateQueue.QueueAll()
packet, err := s.packer.PackPacket()
if err != nil || packet == nil {
return false, err
}
s.sentPacketHandler.SentPacket(packet.ToAckHandlerPacket())
if err := s.sendPackedPacket(packet); err != nil {
return false, err
}
return true, nil
}
func (s *session) sendPackedPacket(packet *packedPacket) error {
defer putPacketBuffer(&packet.raw)
s.logPacket(packet)
return s.conn.Write(packet.raw)
}
func (s *session) sendConnectionClose(quicErr *qerr.QuicError) error {
packet, err := s.packer.PackConnectionClose(&wire.ConnectionCloseFrame{
ErrorCode: quicErr.ErrorCode,
ReasonPhrase: quicErr.ErrorMessage,
})
if err != nil {
return err
}
s.logPacket(packet)
return s.conn.Write(packet.raw)
}
func (s *session) logPacket(packet *packedPacket) {
if !s.logger.Debug() {
// We don't need to allocate the slices for calling the format functions
return
}
s.logger.Debugf("-> Sending packet 0x%x (%d bytes) for connection %s, %s", packet.header.PacketNumber, len(packet.raw), s.srcConnID, packet.encryptionLevel)
packet.header.Log(s.logger)
for _, frame := range packet.frames {
wire.LogFrame(s.logger, frame, true)
}
}
// GetOrOpenStream either returns an existing stream, a newly opened stream, or nil if a stream with the provided ID is already closed.
// It is *only* needed for gQUIC's H2.
// It will be removed as soon as gQUIC moves towards the IETF H2/QUIC stream mapping.
func (s *session) GetOrOpenStream(id protocol.StreamID) (Stream, error) {
str, err := s.streamsMap.GetOrOpenSendStream(id)
if str != nil {
if bstr, ok := str.(Stream); ok {
return bstr, err
}
return nil, fmt.Errorf("Stream %d is not a bidirectional stream", id)
}
// make sure to return an actual nil value here, not an Stream with value nil
return nil, err
}
// AcceptStream returns the next stream openend by the peer
func (s *session) AcceptStream() (Stream, error) {
return s.streamsMap.AcceptStream()
}
func (s *session) AcceptUniStream() (ReceiveStream, error) {
return s.streamsMap.AcceptUniStream()
}
// OpenStream opens a stream
func (s *session) OpenStream() (Stream, error) {
return s.streamsMap.OpenStream()
}
func (s *session) OpenStreamSync() (Stream, error) {
return s.streamsMap.OpenStreamSync()
}
func (s *session) OpenUniStream() (SendStream, error) {
return s.streamsMap.OpenUniStream()
}
func (s *session) OpenUniStreamSync() (SendStream, error) {
return s.streamsMap.OpenUniStreamSync()
}
func (s *session) newStream(id protocol.StreamID) streamI {
flowController := s.newFlowController(id)
return newStream(id, s, flowController, s.version)
}
func (s *session) newFlowController(id protocol.StreamID) flowcontrol.StreamFlowController {
var initialSendWindow protocol.ByteCount
if s.peerParams != nil {
initialSendWindow = s.peerParams.StreamFlowControlWindow
}
return flowcontrol.NewStreamFlowController(
id,
s.version.StreamContributesToConnectionFlowControl(id),
s.connFlowController,
protocol.ReceiveStreamFlowControlWindow,
protocol.ByteCount(s.config.MaxReceiveStreamFlowControlWindow),
initialSendWindow,
s.onHasStreamWindowUpdate,
s.rttStats,
s.logger,
)
}
func (s *session) newCryptoStream() cryptoStream {
id := s.version.CryptoStreamID()
flowController := flowcontrol.NewStreamFlowController(
id,
s.version.StreamContributesToConnectionFlowControl(id),
s.connFlowController,
protocol.ReceiveStreamFlowControlWindow,
protocol.ByteCount(s.config.MaxReceiveStreamFlowControlWindow),
0,
s.onHasStreamWindowUpdate,
s.rttStats,
s.logger,
)
return newCryptoStream(s, flowController, s.version)
}
func (s *session) sendPublicReset(rejectedPacketNumber protocol.PacketNumber) error {
s.logger.Infof("Sending PUBLIC_RESET for connection %s, packet number %d", s.destConnID, rejectedPacketNumber)
return s.conn.Write(wire.WritePublicReset(s.destConnID, rejectedPacketNumber, 0))
}
// scheduleSending signals that we have data for sending
func (s *session) scheduleSending() {
select {
case s.sendingScheduled <- struct{}{}:
default:
}
}
func (s *session) tryQueueingUndecryptablePacket(p *receivedPacket) {
if s.handshakeComplete {
s.logger.Debugf("Received undecryptable packet from %s after the handshake: %#v, %d bytes data", p.remoteAddr.String(), p.header, len(p.data))
return
}
if len(s.undecryptablePackets)+1 > protocol.MaxUndecryptablePackets {
// if this is the first time the undecryptablePackets runs full, start the timer to send a Public Reset
if s.receivedTooManyUndecrytablePacketsTime.IsZero() {
s.receivedTooManyUndecrytablePacketsTime = time.Now()
s.maybeResetTimer()
}
s.logger.Infof("Dropping undecrytable packet 0x%x (undecryptable packet queue full)", p.header.PacketNumber)
return
}
s.logger.Infof("Queueing packet 0x%x for later decryption", p.header.PacketNumber)
s.undecryptablePackets = append(s.undecryptablePackets, p)
}
func (s *session) tryDecryptingQueuedPackets() {
for _, p := range s.undecryptablePackets {
s.handlePacket(p)
}
s.undecryptablePackets = s.undecryptablePackets[:0]
}
func (s *session) queueControlFrame(f wire.Frame) {
s.framer.QueueControlFrame(f)
s.scheduleSending()
}
func (s *session) onHasStreamWindowUpdate(id protocol.StreamID) {
s.windowUpdateQueue.AddStream(id)
s.scheduleSending()
}
func (s *session) onHasConnectionWindowUpdate() {
s.windowUpdateQueue.AddConnection()
s.scheduleSending()
}
func (s *session) onHasStreamData(id protocol.StreamID) {
if id != s.version.CryptoStreamID() {
s.framer.AddActiveStream(id)
}
s.scheduleSending()
}
func (s *session) onStreamCompleted(id protocol.StreamID) {
if err := s.streamsMap.DeleteStream(id); err != nil {
s.closeLocal(err)
}
}
func (s *session) LocalAddr() net.Addr {
return s.conn.LocalAddr()
}
func (s *session) RemoteAddr() net.Addr {
return s.conn.RemoteAddr()
}
func (s *session) GetVersion() protocol.VersionNumber {
return s.version
}