0
Fork 0
mirror of https://github.com/caddyserver/caddy.git synced 2025-01-06 22:40:31 -05:00
caddy/modules/caddyhttp/caddyauth/basicauth.go
Matthew Holt 937ec34201
caddyauth: Prevent user enumeration by timing
Always follow the code path of hashing and comparing a plaintext
password even if the account is not found by the given username; this
ensures that similar CPU cycles are spent for both valid and invalid
usernames.

Thanks to @tylerlm for helping and looking into this!
2020-10-31 10:51:05 -06:00

301 lines
9.2 KiB
Go

// Copyright 2015 Matthew Holt and The Caddy Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package caddyauth
import (
"encoding/base64"
"encoding/hex"
"encoding/json"
"fmt"
weakrand "math/rand"
"net/http"
"sync"
"time"
"github.com/caddyserver/caddy/v2"
)
func init() {
caddy.RegisterModule(HTTPBasicAuth{})
weakrand.Seed(time.Now().UnixNano())
}
// HTTPBasicAuth facilitates HTTP basic authentication.
type HTTPBasicAuth struct {
// The algorithm with which the passwords are hashed. Default: bcrypt
HashRaw json.RawMessage `json:"hash,omitempty" caddy:"namespace=http.authentication.hashes inline_key=algorithm"`
// The list of accounts to authenticate.
AccountList []Account `json:"accounts,omitempty"`
// The name of the realm. Default: restricted
Realm string `json:"realm,omitempty"`
// If non-nil, a mapping of plaintext passwords to their
// hashes will be cached in memory (with random eviction).
// This can greatly improve the performance of traffic-heavy
// servers that use secure password hashing algorithms, with
// the downside that plaintext passwords will be stored in
// memory for a longer time (this should not be a problem
// as long as your machine is not compromised, at which point
// all bets are off, since basicauth necessitates plaintext
// passwords being received over the wire anyway). Note that
// a cache hit does not mean it is a valid password.
HashCache *Cache `json:"hash_cache,omitempty"`
Accounts map[string]Account `json:"-"`
Hash Comparer `json:"-"`
// fakePassword is used when a given user is not found,
// so that timing side-channels can be mitigated: it gives
// us something to hash and compare even if the user does
// not exist, which should have similar timing as a user
// account that does exist.
fakePassword []byte
}
// CaddyModule returns the Caddy module information.
func (HTTPBasicAuth) CaddyModule() caddy.ModuleInfo {
return caddy.ModuleInfo{
ID: "http.authentication.providers.http_basic",
New: func() caddy.Module { return new(HTTPBasicAuth) },
}
}
// Provision provisions the HTTP basic auth provider.
func (hba *HTTPBasicAuth) Provision(ctx caddy.Context) error {
if hba.HashRaw == nil {
hba.HashRaw = json.RawMessage(`{"algorithm": "bcrypt"}`)
}
// load password hasher
hasherIface, err := ctx.LoadModule(hba, "HashRaw")
if err != nil {
return fmt.Errorf("loading password hasher module: %v", err)
}
hba.Hash = hasherIface.(Comparer)
if hba.Hash == nil {
return fmt.Errorf("hash is required")
}
// if supported, generate a fake password we can compare against if needed
if hasher, ok := hba.Hash.(Hasher); ok {
hba.fakePassword, err = hasher.Hash([]byte("antitiming"), []byte("fakesalt"))
if err != nil {
return fmt.Errorf("generating anti-timing password hash: %v", err)
}
}
repl := caddy.NewReplacer()
// load account list
hba.Accounts = make(map[string]Account)
for i, acct := range hba.AccountList {
if _, ok := hba.Accounts[acct.Username]; ok {
return fmt.Errorf("account %d: username is not unique: %s", i, acct.Username)
}
acct.Username = repl.ReplaceAll(acct.Username, "")
acct.Password = repl.ReplaceAll(acct.Password, "")
acct.Salt = repl.ReplaceAll(acct.Salt, "")
if acct.Username == "" || acct.Password == "" {
return fmt.Errorf("account %d: username and password are required", i)
}
acct.password, err = base64.StdEncoding.DecodeString(acct.Password)
if err != nil {
return fmt.Errorf("base64-decoding password: %v", err)
}
if acct.Salt != "" {
acct.salt, err = base64.StdEncoding.DecodeString(acct.Salt)
if err != nil {
return fmt.Errorf("base64-decoding salt: %v", err)
}
}
hba.Accounts[acct.Username] = acct
}
hba.AccountList = nil // allow GC to deallocate
if hba.HashCache != nil {
hba.HashCache.cache = make(map[string]bool)
hba.HashCache.mu = new(sync.Mutex)
}
return nil
}
// Authenticate validates the user credentials in req and returns the user, if valid.
func (hba HTTPBasicAuth) Authenticate(w http.ResponseWriter, req *http.Request) (User, bool, error) {
username, plaintextPasswordStr, ok := req.BasicAuth()
if !ok {
return hba.promptForCredentials(w, nil)
}
account, accountExists := hba.Accounts[username]
if !accountExists {
// don't return early if account does not exist; we want
// to try to avoid side-channels that leak existence, so
// we use a fake password to simulate realistic CPU cycles
account.password = hba.fakePassword
}
same, err := hba.correctPassword(account, []byte(plaintextPasswordStr))
if err != nil {
return hba.promptForCredentials(w, err)
}
if !same || !accountExists {
return hba.promptForCredentials(w, nil)
}
return User{ID: username}, true, nil
}
func (hba HTTPBasicAuth) correctPassword(account Account, plaintextPassword []byte) (bool, error) {
compare := func() (bool, error) {
return hba.Hash.Compare(account.password, plaintextPassword, account.salt)
}
// if no caching is enabled, simply return the result of hashing + comparing
if hba.HashCache == nil {
return compare()
}
// compute a cache key that is unique for these input parameters
cacheKey := hex.EncodeToString(append(append(account.password, account.salt...), plaintextPassword...))
// fast track: if the result of the input is already cached, use it
hba.HashCache.mu.Lock()
same, ok := hba.HashCache.cache[cacheKey]
if ok {
hba.HashCache.mu.Unlock()
return same, nil
}
hba.HashCache.mu.Unlock()
// slow track: do the expensive op, then add it to the cache
same, err := compare()
if err != nil {
return false, err
}
hba.HashCache.mu.Lock()
if len(hba.HashCache.cache) >= 1000 {
hba.HashCache.makeRoom() // keep cache size under control
}
hba.HashCache.cache[cacheKey] = same
hba.HashCache.mu.Unlock()
return same, nil
}
func (hba HTTPBasicAuth) promptForCredentials(w http.ResponseWriter, err error) (User, bool, error) {
// browsers show a message that says something like:
// "The website says: <realm>"
// which is kinda dumb, but whatever.
realm := hba.Realm
if realm == "" {
realm = "restricted"
}
w.Header().Set("WWW-Authenticate", fmt.Sprintf(`Basic realm="%s"`, realm))
return User{}, false, err
}
// Cache enables caching of basic auth results. This is especially
// helpful for secure password hashes which can be expensive to
// compute on every HTTP request.
type Cache struct {
mu *sync.Mutex
// map of concatenated hashed password + plaintext password + salt, to result
cache map[string]bool
}
// makeRoom deletes about 1/10 of the items in the cache
// in order to keep its size under control. It must not be
// called without a lock on c.mu.
func (c *Cache) makeRoom() {
// we delete more than just 1 entry so that we don't have
// to do this on every request; assuming the capacity of
// the cache is on a long tail, we can save a lot of CPU
// time by doing a whole bunch of deletions now and then
// we won't have to do them again for a while
numToDelete := len(c.cache) / 10
if numToDelete < 1 {
numToDelete = 1
}
for deleted := 0; deleted <= numToDelete; deleted++ {
// Go maps are "nondeterministic" not actually random,
// so although we could just chop off the "front" of the
// map with less code, this is a heavily skewed eviction
// strategy; generating random numbers is cheap and
// ensures a much better distribution.
rnd := weakrand.Intn(len(c.cache))
i := 0
for key := range c.cache {
if i == rnd {
delete(c.cache, key)
break
}
i++
}
}
}
// Comparer is a type that can securely compare
// a plaintext password with a hashed password
// in constant-time. Comparers should hash the
// plaintext password and then use constant-time
// comparison.
type Comparer interface {
// Compare returns true if the result of hashing
// plaintextPassword with salt is hashedPassword,
// false otherwise. An error is returned only if
// there is a technical/configuration error.
Compare(hashedPassword, plaintextPassword, salt []byte) (bool, error)
}
// Hasher is a type that can generate a secure hash
// given a plaintext and optional salt (for algorithms
// that require a salt). Hashing modules which implement
// this interface can be used with the hash-password
// subcommand as well as benefitting from anti-timing
// features.
type Hasher interface {
Hash(plaintext, salt []byte) ([]byte, error)
}
// Account contains a username, password, and salt (if applicable).
type Account struct {
// A user's username.
Username string `json:"username"`
// The user's hashed password, base64-encoded.
Password string `json:"password"`
// The user's password salt, base64-encoded; for
// algorithms where external salt is needed.
Salt string `json:"salt,omitempty"`
password, salt []byte
}
// Interface guards
var (
_ caddy.Provisioner = (*HTTPBasicAuth)(nil)
_ Authenticator = (*HTTPBasicAuth)(nil)
)