mirror of
https://github.com/caddyserver/caddy.git
synced 2024-12-30 22:34:15 -05:00
388ff6bc0a
- Also implemented robust error handling and failovers - Vendored klauspost/cpuid
1024 lines
27 KiB
Go
1024 lines
27 KiB
Go
// Generated, DO NOT EDIT,
|
||
// but copy it to your own project and rename the package.
|
||
// See more at http://github.com/klauspost/cpuid
|
||
|
||
package cpuid
|
||
|
||
import "strings"
|
||
|
||
// Vendor is a representation of a CPU vendor.
|
||
type vendor int
|
||
|
||
const (
|
||
other vendor = iota
|
||
intel
|
||
amd
|
||
via
|
||
transmeta
|
||
nsc
|
||
kvm // Kernel-based Virtual Machine
|
||
msvm // Microsoft Hyper-V or Windows Virtual PC
|
||
vmware
|
||
xenhvm
|
||
)
|
||
|
||
const (
|
||
cmov = 1 << iota // i686 CMOV
|
||
nx // NX (No-Execute) bit
|
||
amd3dnow // AMD 3DNOW
|
||
amd3dnowext // AMD 3DNowExt
|
||
mmx // standard MMX
|
||
mmxext // SSE integer functions or AMD MMX ext
|
||
sse // SSE functions
|
||
sse2 // P4 SSE functions
|
||
sse3 // Prescott SSE3 functions
|
||
ssse3 // Conroe SSSE3 functions
|
||
sse4 // Penryn SSE4.1 functions
|
||
sse4a // AMD Barcelona microarchitecture SSE4a instructions
|
||
sse42 // Nehalem SSE4.2 functions
|
||
avx // AVX functions
|
||
avx2 // AVX2 functions
|
||
fma3 // Intel FMA 3
|
||
fma4 // Bulldozer FMA4 functions
|
||
xop // Bulldozer XOP functions
|
||
f16c // Half-precision floating-point conversion
|
||
bmi1 // Bit Manipulation Instruction Set 1
|
||
bmi2 // Bit Manipulation Instruction Set 2
|
||
tbm // AMD Trailing Bit Manipulation
|
||
lzcnt // LZCNT instruction
|
||
popcnt // POPCNT instruction
|
||
aesni // Advanced Encryption Standard New Instructions
|
||
clmul // Carry-less Multiplication
|
||
htt // Hyperthreading (enabled)
|
||
hle // Hardware Lock Elision
|
||
rtm // Restricted Transactional Memory
|
||
rdrand // RDRAND instruction is available
|
||
rdseed // RDSEED instruction is available
|
||
adx // Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
|
||
sha // Intel SHA Extensions
|
||
avx512f // AVX-512 Foundation
|
||
avx512dq // AVX-512 Doubleword and Quadword Instructions
|
||
avx512ifma // AVX-512 Integer Fused Multiply-Add Instructions
|
||
avx512pf // AVX-512 Prefetch Instructions
|
||
avx512er // AVX-512 Exponential and Reciprocal Instructions
|
||
avx512cd // AVX-512 Conflict Detection Instructions
|
||
avx512bw // AVX-512 Byte and Word Instructions
|
||
avx512vl // AVX-512 Vector Length Extensions
|
||
avx512vbmi // AVX-512 Vector Bit Manipulation Instructions
|
||
mpx // Intel MPX (Memory Protection Extensions)
|
||
erms // Enhanced REP MOVSB/STOSB
|
||
rdtscp // RDTSCP Instruction
|
||
cx16 // CMPXCHG16B Instruction
|
||
sgx // Software Guard Extensions
|
||
|
||
// Performance indicators
|
||
sse2slow // SSE2 is supported, but usually not faster
|
||
sse3slow // SSE3 is supported, but usually not faster
|
||
atom // Atom processor, some SSSE3 instructions are slower
|
||
)
|
||
|
||
var flagNames = map[flags]string{
|
||
cmov: "CMOV", // i686 CMOV
|
||
nx: "NX", // NX (No-Execute) bit
|
||
amd3dnow: "AMD3DNOW", // AMD 3DNOW
|
||
amd3dnowext: "AMD3DNOWEXT", // AMD 3DNowExt
|
||
mmx: "MMX", // Standard MMX
|
||
mmxext: "MMXEXT", // SSE integer functions or AMD MMX ext
|
||
sse: "SSE", // SSE functions
|
||
sse2: "SSE2", // P4 SSE2 functions
|
||
sse3: "SSE3", // Prescott SSE3 functions
|
||
ssse3: "SSSE3", // Conroe SSSE3 functions
|
||
sse4: "SSE4.1", // Penryn SSE4.1 functions
|
||
sse4a: "SSE4A", // AMD Barcelona microarchitecture SSE4a instructions
|
||
sse42: "SSE4.2", // Nehalem SSE4.2 functions
|
||
avx: "AVX", // AVX functions
|
||
avx2: "AVX2", // AVX functions
|
||
fma3: "FMA3", // Intel FMA 3
|
||
fma4: "FMA4", // Bulldozer FMA4 functions
|
||
xop: "XOP", // Bulldozer XOP functions
|
||
f16c: "F16C", // Half-precision floating-point conversion
|
||
bmi1: "BMI1", // Bit Manipulation Instruction Set 1
|
||
bmi2: "BMI2", // Bit Manipulation Instruction Set 2
|
||
tbm: "TBM", // AMD Trailing Bit Manipulation
|
||
lzcnt: "LZCNT", // LZCNT instruction
|
||
popcnt: "POPCNT", // POPCNT instruction
|
||
aesni: "AESNI", // Advanced Encryption Standard New Instructions
|
||
clmul: "CLMUL", // Carry-less Multiplication
|
||
htt: "HTT", // Hyperthreading (enabled)
|
||
hle: "HLE", // Hardware Lock Elision
|
||
rtm: "RTM", // Restricted Transactional Memory
|
||
rdrand: "RDRAND", // RDRAND instruction is available
|
||
rdseed: "RDSEED", // RDSEED instruction is available
|
||
adx: "ADX", // Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
|
||
sha: "SHA", // Intel SHA Extensions
|
||
avx512f: "AVX512F", // AVX-512 Foundation
|
||
avx512dq: "AVX512DQ", // AVX-512 Doubleword and Quadword Instructions
|
||
avx512ifma: "AVX512IFMA", // AVX-512 Integer Fused Multiply-Add Instructions
|
||
avx512pf: "AVX512PF", // AVX-512 Prefetch Instructions
|
||
avx512er: "AVX512ER", // AVX-512 Exponential and Reciprocal Instructions
|
||
avx512cd: "AVX512CD", // AVX-512 Conflict Detection Instructions
|
||
avx512bw: "AVX512BW", // AVX-512 Byte and Word Instructions
|
||
avx512vl: "AVX512VL", // AVX-512 Vector Length Extensions
|
||
avx512vbmi: "AVX512VBMI", // AVX-512 Vector Bit Manipulation Instructions
|
||
mpx: "MPX", // Intel MPX (Memory Protection Extensions)
|
||
erms: "ERMS", // Enhanced REP MOVSB/STOSB
|
||
rdtscp: "RDTSCP", // RDTSCP Instruction
|
||
cx16: "CX16", // CMPXCHG16B Instruction
|
||
sgx: "SGX", // Software Guard Extensions
|
||
|
||
// Performance indicators
|
||
sse2slow: "SSE2SLOW", // SSE2 supported, but usually not faster
|
||
sse3slow: "SSE3SLOW", // SSE3 supported, but usually not faster
|
||
atom: "ATOM", // Atom processor, some SSSE3 instructions are slower
|
||
|
||
}
|
||
|
||
// CPUInfo contains information about the detected system CPU.
|
||
type cpuInfo struct {
|
||
brandname string // Brand name reported by the CPU
|
||
vendorid vendor // Comparable CPU vendor ID
|
||
features flags // Features of the CPU
|
||
physicalcores int // Number of physical processor cores in your CPU. Will be 0 if undetectable.
|
||
threadspercore int // Number of threads per physical core. Will be 1 if undetectable.
|
||
logicalcores int // Number of physical cores times threads that can run on each core through the use of hyperthreading. Will be 0 if undetectable.
|
||
family int // CPU family number
|
||
model int // CPU model number
|
||
cacheline int // Cache line size in bytes. Will be 0 if undetectable.
|
||
cache struct {
|
||
l1i int // L1 Instruction Cache (per core or shared). Will be -1 if undetected
|
||
l1d int // L1 Data Cache (per core or shared). Will be -1 if undetected
|
||
l2 int // L2 Cache (per core or shared). Will be -1 if undetected
|
||
l3 int // L3 Instruction Cache (per core or shared). Will be -1 if undetected
|
||
}
|
||
sgx sgxsupport
|
||
maxFunc uint32
|
||
maxExFunc uint32
|
||
}
|
||
|
||
var cpuid func(op uint32) (eax, ebx, ecx, edx uint32)
|
||
var cpuidex func(op, op2 uint32) (eax, ebx, ecx, edx uint32)
|
||
var xgetbv func(index uint32) (eax, edx uint32)
|
||
var rdtscpAsm func() (eax, ebx, ecx, edx uint32)
|
||
|
||
// CPU contains information about the CPU as detected on startup,
|
||
// or when Detect last was called.
|
||
//
|
||
// Use this as the primary entry point to you data,
|
||
// this way queries are
|
||
var cpu cpuInfo
|
||
|
||
func init() {
|
||
initCPU()
|
||
detect()
|
||
}
|
||
|
||
// Detect will re-detect current CPU info.
|
||
// This will replace the content of the exported CPU variable.
|
||
//
|
||
// Unless you expect the CPU to change while you are running your program
|
||
// you should not need to call this function.
|
||
// If you call this, you must ensure that no other goroutine is accessing the
|
||
// exported CPU variable.
|
||
func detect() {
|
||
cpu.maxFunc = maxFunctionID()
|
||
cpu.maxExFunc = maxExtendedFunction()
|
||
cpu.brandname = brandName()
|
||
cpu.cacheline = cacheLine()
|
||
cpu.family, cpu.model = familyModel()
|
||
cpu.features = support()
|
||
cpu.sgx = hasSGX(cpu.features&sgx != 0)
|
||
cpu.threadspercore = threadsPerCore()
|
||
cpu.logicalcores = logicalCores()
|
||
cpu.physicalcores = physicalCores()
|
||
cpu.vendorid = vendorID()
|
||
cpu.cacheSize()
|
||
}
|
||
|
||
// Generated here: http://play.golang.org/p/BxFH2Gdc0G
|
||
|
||
// Cmov indicates support of CMOV instructions
|
||
func (c cpuInfo) cmov() bool {
|
||
return c.features&cmov != 0
|
||
}
|
||
|
||
// Amd3dnow indicates support of AMD 3DNOW! instructions
|
||
func (c cpuInfo) amd3dnow() bool {
|
||
return c.features&amd3dnow != 0
|
||
}
|
||
|
||
// Amd3dnowExt indicates support of AMD 3DNOW! Extended instructions
|
||
func (c cpuInfo) amd3dnowext() bool {
|
||
return c.features&amd3dnowext != 0
|
||
}
|
||
|
||
// MMX indicates support of MMX instructions
|
||
func (c cpuInfo) mmx() bool {
|
||
return c.features&mmx != 0
|
||
}
|
||
|
||
// MMXExt indicates support of MMXEXT instructions
|
||
// (SSE integer functions or AMD MMX ext)
|
||
func (c cpuInfo) mmxext() bool {
|
||
return c.features&mmxext != 0
|
||
}
|
||
|
||
// SSE indicates support of SSE instructions
|
||
func (c cpuInfo) sse() bool {
|
||
return c.features&sse != 0
|
||
}
|
||
|
||
// SSE2 indicates support of SSE 2 instructions
|
||
func (c cpuInfo) sse2() bool {
|
||
return c.features&sse2 != 0
|
||
}
|
||
|
||
// SSE3 indicates support of SSE 3 instructions
|
||
func (c cpuInfo) sse3() bool {
|
||
return c.features&sse3 != 0
|
||
}
|
||
|
||
// SSSE3 indicates support of SSSE 3 instructions
|
||
func (c cpuInfo) ssse3() bool {
|
||
return c.features&ssse3 != 0
|
||
}
|
||
|
||
// SSE4 indicates support of SSE 4 (also called SSE 4.1) instructions
|
||
func (c cpuInfo) sse4() bool {
|
||
return c.features&sse4 != 0
|
||
}
|
||
|
||
// SSE42 indicates support of SSE4.2 instructions
|
||
func (c cpuInfo) sse42() bool {
|
||
return c.features&sse42 != 0
|
||
}
|
||
|
||
// AVX indicates support of AVX instructions
|
||
// and operating system support of AVX instructions
|
||
func (c cpuInfo) avx() bool {
|
||
return c.features&avx != 0
|
||
}
|
||
|
||
// AVX2 indicates support of AVX2 instructions
|
||
func (c cpuInfo) avx2() bool {
|
||
return c.features&avx2 != 0
|
||
}
|
||
|
||
// FMA3 indicates support of FMA3 instructions
|
||
func (c cpuInfo) fma3() bool {
|
||
return c.features&fma3 != 0
|
||
}
|
||
|
||
// FMA4 indicates support of FMA4 instructions
|
||
func (c cpuInfo) fma4() bool {
|
||
return c.features&fma4 != 0
|
||
}
|
||
|
||
// XOP indicates support of XOP instructions
|
||
func (c cpuInfo) xop() bool {
|
||
return c.features&xop != 0
|
||
}
|
||
|
||
// F16C indicates support of F16C instructions
|
||
func (c cpuInfo) f16c() bool {
|
||
return c.features&f16c != 0
|
||
}
|
||
|
||
// BMI1 indicates support of BMI1 instructions
|
||
func (c cpuInfo) bmi1() bool {
|
||
return c.features&bmi1 != 0
|
||
}
|
||
|
||
// BMI2 indicates support of BMI2 instructions
|
||
func (c cpuInfo) bmi2() bool {
|
||
return c.features&bmi2 != 0
|
||
}
|
||
|
||
// TBM indicates support of TBM instructions
|
||
// (AMD Trailing Bit Manipulation)
|
||
func (c cpuInfo) tbm() bool {
|
||
return c.features&tbm != 0
|
||
}
|
||
|
||
// Lzcnt indicates support of LZCNT instruction
|
||
func (c cpuInfo) lzcnt() bool {
|
||
return c.features&lzcnt != 0
|
||
}
|
||
|
||
// Popcnt indicates support of POPCNT instruction
|
||
func (c cpuInfo) popcnt() bool {
|
||
return c.features&popcnt != 0
|
||
}
|
||
|
||
// HTT indicates the processor has Hyperthreading enabled
|
||
func (c cpuInfo) htt() bool {
|
||
return c.features&htt != 0
|
||
}
|
||
|
||
// SSE2Slow indicates that SSE2 may be slow on this processor
|
||
func (c cpuInfo) sse2slow() bool {
|
||
return c.features&sse2slow != 0
|
||
}
|
||
|
||
// SSE3Slow indicates that SSE3 may be slow on this processor
|
||
func (c cpuInfo) sse3slow() bool {
|
||
return c.features&sse3slow != 0
|
||
}
|
||
|
||
// AesNi indicates support of AES-NI instructions
|
||
// (Advanced Encryption Standard New Instructions)
|
||
func (c cpuInfo) aesni() bool {
|
||
return c.features&aesni != 0
|
||
}
|
||
|
||
// Clmul indicates support of CLMUL instructions
|
||
// (Carry-less Multiplication)
|
||
func (c cpuInfo) clmul() bool {
|
||
return c.features&clmul != 0
|
||
}
|
||
|
||
// NX indicates support of NX (No-Execute) bit
|
||
func (c cpuInfo) nx() bool {
|
||
return c.features&nx != 0
|
||
}
|
||
|
||
// SSE4A indicates support of AMD Barcelona microarchitecture SSE4a instructions
|
||
func (c cpuInfo) sse4a() bool {
|
||
return c.features&sse4a != 0
|
||
}
|
||
|
||
// HLE indicates support of Hardware Lock Elision
|
||
func (c cpuInfo) hle() bool {
|
||
return c.features&hle != 0
|
||
}
|
||
|
||
// RTM indicates support of Restricted Transactional Memory
|
||
func (c cpuInfo) rtm() bool {
|
||
return c.features&rtm != 0
|
||
}
|
||
|
||
// Rdrand indicates support of RDRAND instruction is available
|
||
func (c cpuInfo) rdrand() bool {
|
||
return c.features&rdrand != 0
|
||
}
|
||
|
||
// Rdseed indicates support of RDSEED instruction is available
|
||
func (c cpuInfo) rdseed() bool {
|
||
return c.features&rdseed != 0
|
||
}
|
||
|
||
// ADX indicates support of Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
|
||
func (c cpuInfo) adx() bool {
|
||
return c.features&adx != 0
|
||
}
|
||
|
||
// SHA indicates support of Intel SHA Extensions
|
||
func (c cpuInfo) sha() bool {
|
||
return c.features&sha != 0
|
||
}
|
||
|
||
// AVX512F indicates support of AVX-512 Foundation
|
||
func (c cpuInfo) avx512f() bool {
|
||
return c.features&avx512f != 0
|
||
}
|
||
|
||
// AVX512DQ indicates support of AVX-512 Doubleword and Quadword Instructions
|
||
func (c cpuInfo) avx512dq() bool {
|
||
return c.features&avx512dq != 0
|
||
}
|
||
|
||
// AVX512IFMA indicates support of AVX-512 Integer Fused Multiply-Add Instructions
|
||
func (c cpuInfo) avx512ifma() bool {
|
||
return c.features&avx512ifma != 0
|
||
}
|
||
|
||
// AVX512PF indicates support of AVX-512 Prefetch Instructions
|
||
func (c cpuInfo) avx512pf() bool {
|
||
return c.features&avx512pf != 0
|
||
}
|
||
|
||
// AVX512ER indicates support of AVX-512 Exponential and Reciprocal Instructions
|
||
func (c cpuInfo) avx512er() bool {
|
||
return c.features&avx512er != 0
|
||
}
|
||
|
||
// AVX512CD indicates support of AVX-512 Conflict Detection Instructions
|
||
func (c cpuInfo) avx512cd() bool {
|
||
return c.features&avx512cd != 0
|
||
}
|
||
|
||
// AVX512BW indicates support of AVX-512 Byte and Word Instructions
|
||
func (c cpuInfo) avx512bw() bool {
|
||
return c.features&avx512bw != 0
|
||
}
|
||
|
||
// AVX512VL indicates support of AVX-512 Vector Length Extensions
|
||
func (c cpuInfo) avx512vl() bool {
|
||
return c.features&avx512vl != 0
|
||
}
|
||
|
||
// AVX512VBMI indicates support of AVX-512 Vector Bit Manipulation Instructions
|
||
func (c cpuInfo) avx512vbmi() bool {
|
||
return c.features&avx512vbmi != 0
|
||
}
|
||
|
||
// MPX indicates support of Intel MPX (Memory Protection Extensions)
|
||
func (c cpuInfo) mpx() bool {
|
||
return c.features&mpx != 0
|
||
}
|
||
|
||
// ERMS indicates support of Enhanced REP MOVSB/STOSB
|
||
func (c cpuInfo) erms() bool {
|
||
return c.features&erms != 0
|
||
}
|
||
|
||
// RDTSCP Instruction is available.
|
||
func (c cpuInfo) rdtscp() bool {
|
||
return c.features&rdtscp != 0
|
||
}
|
||
|
||
// CX16 indicates if CMPXCHG16B instruction is available.
|
||
func (c cpuInfo) cx16() bool {
|
||
return c.features&cx16 != 0
|
||
}
|
||
|
||
// TSX is split into HLE (Hardware Lock Elision) and RTM (Restricted Transactional Memory) detection.
|
||
// So TSX simply checks that.
|
||
func (c cpuInfo) tsx() bool {
|
||
return c.features&(mpx|rtm) == mpx|rtm
|
||
}
|
||
|
||
// Atom indicates an Atom processor
|
||
func (c cpuInfo) atom() bool {
|
||
return c.features&atom != 0
|
||
}
|
||
|
||
// Intel returns true if vendor is recognized as Intel
|
||
func (c cpuInfo) intel() bool {
|
||
return c.vendorid == intel
|
||
}
|
||
|
||
// AMD returns true if vendor is recognized as AMD
|
||
func (c cpuInfo) amd() bool {
|
||
return c.vendorid == amd
|
||
}
|
||
|
||
// Transmeta returns true if vendor is recognized as Transmeta
|
||
func (c cpuInfo) transmeta() bool {
|
||
return c.vendorid == transmeta
|
||
}
|
||
|
||
// NSC returns true if vendor is recognized as National Semiconductor
|
||
func (c cpuInfo) nsc() bool {
|
||
return c.vendorid == nsc
|
||
}
|
||
|
||
// VIA returns true if vendor is recognized as VIA
|
||
func (c cpuInfo) via() bool {
|
||
return c.vendorid == via
|
||
}
|
||
|
||
// RTCounter returns the 64-bit time-stamp counter
|
||
// Uses the RDTSCP instruction. The value 0 is returned
|
||
// if the CPU does not support the instruction.
|
||
func (c cpuInfo) rtcounter() uint64 {
|
||
if !c.rdtscp() {
|
||
return 0
|
||
}
|
||
a, _, _, d := rdtscpAsm()
|
||
return uint64(a) | (uint64(d) << 32)
|
||
}
|
||
|
||
// Ia32TscAux returns the IA32_TSC_AUX part of the RDTSCP.
|
||
// This variable is OS dependent, but on Linux contains information
|
||
// about the current cpu/core the code is running on.
|
||
// If the RDTSCP instruction isn't supported on the CPU, the value 0 is returned.
|
||
func (c cpuInfo) ia32tscaux() uint32 {
|
||
if !c.rdtscp() {
|
||
return 0
|
||
}
|
||
_, _, ecx, _ := rdtscpAsm()
|
||
return ecx
|
||
}
|
||
|
||
// LogicalCPU will return the Logical CPU the code is currently executing on.
|
||
// This is likely to change when the OS re-schedules the running thread
|
||
// to another CPU.
|
||
// If the current core cannot be detected, -1 will be returned.
|
||
func (c cpuInfo) logicalcpu() int {
|
||
if c.maxFunc < 1 {
|
||
return -1
|
||
}
|
||
_, ebx, _, _ := cpuid(1)
|
||
return int(ebx >> 24)
|
||
}
|
||
|
||
// VM Will return true if the cpu id indicates we are in
|
||
// a virtual machine. This is only a hint, and will very likely
|
||
// have many false negatives.
|
||
func (c cpuInfo) vm() bool {
|
||
switch c.vendorid {
|
||
case msvm, kvm, vmware, xenhvm:
|
||
return true
|
||
}
|
||
return false
|
||
}
|
||
|
||
// Flags contains detected cpu features and caracteristics
|
||
type flags uint64
|
||
|
||
// String returns a string representation of the detected
|
||
// CPU features.
|
||
func (f flags) String() string {
|
||
return strings.Join(f.strings(), ",")
|
||
}
|
||
|
||
// Strings returns and array of the detected features.
|
||
func (f flags) strings() []string {
|
||
s := support()
|
||
r := make([]string, 0, 20)
|
||
for i := uint(0); i < 64; i++ {
|
||
key := flags(1 << i)
|
||
val := flagNames[key]
|
||
if s&key != 0 {
|
||
r = append(r, val)
|
||
}
|
||
}
|
||
return r
|
||
}
|
||
|
||
func maxExtendedFunction() uint32 {
|
||
eax, _, _, _ := cpuid(0x80000000)
|
||
return eax
|
||
}
|
||
|
||
func maxFunctionID() uint32 {
|
||
a, _, _, _ := cpuid(0)
|
||
return a
|
||
}
|
||
|
||
func brandName() string {
|
||
if maxExtendedFunction() >= 0x80000004 {
|
||
v := make([]uint32, 0, 48)
|
||
for i := uint32(0); i < 3; i++ {
|
||
a, b, c, d := cpuid(0x80000002 + i)
|
||
v = append(v, a, b, c, d)
|
||
}
|
||
return strings.Trim(string(valAsString(v...)), " ")
|
||
}
|
||
return "unknown"
|
||
}
|
||
|
||
func threadsPerCore() int {
|
||
mfi := maxFunctionID()
|
||
if mfi < 0x4 || vendorID() != intel {
|
||
return 1
|
||
}
|
||
|
||
if mfi < 0xb {
|
||
_, b, _, d := cpuid(1)
|
||
if (d & (1 << 28)) != 0 {
|
||
// v will contain logical core count
|
||
v := (b >> 16) & 255
|
||
if v > 1 {
|
||
a4, _, _, _ := cpuid(4)
|
||
// physical cores
|
||
v2 := (a4 >> 26) + 1
|
||
if v2 > 0 {
|
||
return int(v) / int(v2)
|
||
}
|
||
}
|
||
}
|
||
return 1
|
||
}
|
||
_, b, _, _ := cpuidex(0xb, 0)
|
||
if b&0xffff == 0 {
|
||
return 1
|
||
}
|
||
return int(b & 0xffff)
|
||
}
|
||
|
||
func logicalCores() int {
|
||
mfi := maxFunctionID()
|
||
switch vendorID() {
|
||
case intel:
|
||
// Use this on old Intel processors
|
||
if mfi < 0xb {
|
||
if mfi < 1 {
|
||
return 0
|
||
}
|
||
// CPUID.1:EBX[23:16] represents the maximum number of addressable IDs (initial APIC ID)
|
||
// that can be assigned to logical processors in a physical package.
|
||
// The value may not be the same as the number of logical processors that are present in the hardware of a physical package.
|
||
_, ebx, _, _ := cpuid(1)
|
||
logical := (ebx >> 16) & 0xff
|
||
return int(logical)
|
||
}
|
||
_, b, _, _ := cpuidex(0xb, 1)
|
||
return int(b & 0xffff)
|
||
case amd:
|
||
_, b, _, _ := cpuid(1)
|
||
return int((b >> 16) & 0xff)
|
||
default:
|
||
return 0
|
||
}
|
||
}
|
||
|
||
func familyModel() (int, int) {
|
||
if maxFunctionID() < 0x1 {
|
||
return 0, 0
|
||
}
|
||
eax, _, _, _ := cpuid(1)
|
||
family := ((eax >> 8) & 0xf) + ((eax >> 20) & 0xff)
|
||
model := ((eax >> 4) & 0xf) + ((eax >> 12) & 0xf0)
|
||
return int(family), int(model)
|
||
}
|
||
|
||
func physicalCores() int {
|
||
switch vendorID() {
|
||
case intel:
|
||
return logicalCores() / threadsPerCore()
|
||
case amd:
|
||
if maxExtendedFunction() >= 0x80000008 {
|
||
_, _, c, _ := cpuid(0x80000008)
|
||
return int(c&0xff) + 1
|
||
}
|
||
}
|
||
return 0
|
||
}
|
||
|
||
// Except from http://en.wikipedia.org/wiki/CPUID#EAX.3D0:_Get_vendor_ID
|
||
var vendorMapping = map[string]vendor{
|
||
"AMDisbetter!": amd,
|
||
"AuthenticAMD": amd,
|
||
"CentaurHauls": via,
|
||
"GenuineIntel": intel,
|
||
"TransmetaCPU": transmeta,
|
||
"GenuineTMx86": transmeta,
|
||
"Geode by NSC": nsc,
|
||
"VIA VIA VIA ": via,
|
||
"KVMKVMKVMKVM": kvm,
|
||
"Microsoft Hv": msvm,
|
||
"VMwareVMware": vmware,
|
||
"XenVMMXenVMM": xenhvm,
|
||
}
|
||
|
||
func vendorID() vendor {
|
||
_, b, c, d := cpuid(0)
|
||
v := valAsString(b, d, c)
|
||
vend, ok := vendorMapping[string(v)]
|
||
if !ok {
|
||
return other
|
||
}
|
||
return vend
|
||
}
|
||
|
||
func cacheLine() int {
|
||
if maxFunctionID() < 0x1 {
|
||
return 0
|
||
}
|
||
|
||
_, ebx, _, _ := cpuid(1)
|
||
cache := (ebx & 0xff00) >> 5 // cflush size
|
||
if cache == 0 && maxExtendedFunction() >= 0x80000006 {
|
||
_, _, ecx, _ := cpuid(0x80000006)
|
||
cache = ecx & 0xff // cacheline size
|
||
}
|
||
// TODO: Read from Cache and TLB Information
|
||
return int(cache)
|
||
}
|
||
|
||
func (c *cpuInfo) cacheSize() {
|
||
c.cache.l1d = -1
|
||
c.cache.l1i = -1
|
||
c.cache.l2 = -1
|
||
c.cache.l3 = -1
|
||
vendor := vendorID()
|
||
switch vendor {
|
||
case intel:
|
||
if maxFunctionID() < 4 {
|
||
return
|
||
}
|
||
for i := uint32(0); ; i++ {
|
||
eax, ebx, ecx, _ := cpuidex(4, i)
|
||
cacheType := eax & 15
|
||
if cacheType == 0 {
|
||
break
|
||
}
|
||
cacheLevel := (eax >> 5) & 7
|
||
coherency := int(ebx&0xfff) + 1
|
||
partitions := int((ebx>>12)&0x3ff) + 1
|
||
associativity := int((ebx>>22)&0x3ff) + 1
|
||
sets := int(ecx) + 1
|
||
size := associativity * partitions * coherency * sets
|
||
switch cacheLevel {
|
||
case 1:
|
||
if cacheType == 1 {
|
||
// 1 = Data Cache
|
||
c.cache.l1d = size
|
||
} else if cacheType == 2 {
|
||
// 2 = Instruction Cache
|
||
c.cache.l1i = size
|
||
} else {
|
||
if c.cache.l1d < 0 {
|
||
c.cache.l1i = size
|
||
}
|
||
if c.cache.l1i < 0 {
|
||
c.cache.l1i = size
|
||
}
|
||
}
|
||
case 2:
|
||
c.cache.l2 = size
|
||
case 3:
|
||
c.cache.l3 = size
|
||
}
|
||
}
|
||
case amd:
|
||
// Untested.
|
||
if maxExtendedFunction() < 0x80000005 {
|
||
return
|
||
}
|
||
_, _, ecx, edx := cpuid(0x80000005)
|
||
c.cache.l1d = int(((ecx >> 24) & 0xFF) * 1024)
|
||
c.cache.l1i = int(((edx >> 24) & 0xFF) * 1024)
|
||
|
||
if maxExtendedFunction() < 0x80000006 {
|
||
return
|
||
}
|
||
_, _, ecx, _ = cpuid(0x80000006)
|
||
c.cache.l2 = int(((ecx >> 16) & 0xFFFF) * 1024)
|
||
}
|
||
|
||
return
|
||
}
|
||
|
||
type sgxsupport struct {
|
||
available bool
|
||
sgx1supported bool
|
||
sgx2supported bool
|
||
maxenclavesizenot64 int64
|
||
maxenclavesize64 int64
|
||
}
|
||
|
||
func hasSGX(available bool) (rval sgxsupport) {
|
||
rval.available = available
|
||
|
||
if !available {
|
||
return
|
||
}
|
||
|
||
a, _, _, d := cpuidex(0x12, 0)
|
||
rval.sgx1supported = a&0x01 != 0
|
||
rval.sgx2supported = a&0x02 != 0
|
||
rval.maxenclavesizenot64 = 1 << (d & 0xFF) // pow 2
|
||
rval.maxenclavesize64 = 1 << ((d >> 8) & 0xFF) // pow 2
|
||
|
||
return
|
||
}
|
||
|
||
func support() flags {
|
||
mfi := maxFunctionID()
|
||
vend := vendorID()
|
||
if mfi < 0x1 {
|
||
return 0
|
||
}
|
||
rval := uint64(0)
|
||
_, _, c, d := cpuid(1)
|
||
if (d & (1 << 15)) != 0 {
|
||
rval |= cmov
|
||
}
|
||
if (d & (1 << 23)) != 0 {
|
||
rval |= mmx
|
||
}
|
||
if (d & (1 << 25)) != 0 {
|
||
rval |= mmxext
|
||
}
|
||
if (d & (1 << 25)) != 0 {
|
||
rval |= sse
|
||
}
|
||
if (d & (1 << 26)) != 0 {
|
||
rval |= sse2
|
||
}
|
||
if (c & 1) != 0 {
|
||
rval |= sse3
|
||
}
|
||
if (c & 0x00000200) != 0 {
|
||
rval |= ssse3
|
||
}
|
||
if (c & 0x00080000) != 0 {
|
||
rval |= sse4
|
||
}
|
||
if (c & 0x00100000) != 0 {
|
||
rval |= sse42
|
||
}
|
||
if (c & (1 << 25)) != 0 {
|
||
rval |= aesni
|
||
}
|
||
if (c & (1 << 1)) != 0 {
|
||
rval |= clmul
|
||
}
|
||
if c&(1<<23) != 0 {
|
||
rval |= popcnt
|
||
}
|
||
if c&(1<<30) != 0 {
|
||
rval |= rdrand
|
||
}
|
||
if c&(1<<29) != 0 {
|
||
rval |= f16c
|
||
}
|
||
if c&(1<<13) != 0 {
|
||
rval |= cx16
|
||
}
|
||
if vend == intel && (d&(1<<28)) != 0 && mfi >= 4 {
|
||
if threadsPerCore() > 1 {
|
||
rval |= htt
|
||
}
|
||
}
|
||
|
||
// Check XGETBV, OXSAVE and AVX bits
|
||
if c&(1<<26) != 0 && c&(1<<27) != 0 && c&(1<<28) != 0 {
|
||
// Check for OS support
|
||
eax, _ := xgetbv(0)
|
||
if (eax & 0x6) == 0x6 {
|
||
rval |= avx
|
||
if (c & 0x00001000) != 0 {
|
||
rval |= fma3
|
||
}
|
||
}
|
||
}
|
||
|
||
// Check AVX2, AVX2 requires OS support, but BMI1/2 don't.
|
||
if mfi >= 7 {
|
||
_, ebx, ecx, _ := cpuidex(7, 0)
|
||
if (rval&avx) != 0 && (ebx&0x00000020) != 0 {
|
||
rval |= avx2
|
||
}
|
||
if (ebx & 0x00000008) != 0 {
|
||
rval |= bmi1
|
||
if (ebx & 0x00000100) != 0 {
|
||
rval |= bmi2
|
||
}
|
||
}
|
||
if ebx&(1<<2) != 0 {
|
||
rval |= sgx
|
||
}
|
||
if ebx&(1<<4) != 0 {
|
||
rval |= hle
|
||
}
|
||
if ebx&(1<<9) != 0 {
|
||
rval |= erms
|
||
}
|
||
if ebx&(1<<11) != 0 {
|
||
rval |= rtm
|
||
}
|
||
if ebx&(1<<14) != 0 {
|
||
rval |= mpx
|
||
}
|
||
if ebx&(1<<18) != 0 {
|
||
rval |= rdseed
|
||
}
|
||
if ebx&(1<<19) != 0 {
|
||
rval |= adx
|
||
}
|
||
if ebx&(1<<29) != 0 {
|
||
rval |= sha
|
||
}
|
||
|
||
// Only detect AVX-512 features if XGETBV is supported
|
||
if c&((1<<26)|(1<<27)) == (1<<26)|(1<<27) {
|
||
// Check for OS support
|
||
eax, _ := xgetbv(0)
|
||
|
||
// Verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and
|
||
// ZMM16-ZMM31 state are enabled by OS)
|
||
/// and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by OS).
|
||
if (eax>>5)&7 == 7 && (eax>>1)&3 == 3 {
|
||
if ebx&(1<<16) != 0 {
|
||
rval |= avx512f
|
||
}
|
||
if ebx&(1<<17) != 0 {
|
||
rval |= avx512dq
|
||
}
|
||
if ebx&(1<<21) != 0 {
|
||
rval |= avx512ifma
|
||
}
|
||
if ebx&(1<<26) != 0 {
|
||
rval |= avx512pf
|
||
}
|
||
if ebx&(1<<27) != 0 {
|
||
rval |= avx512er
|
||
}
|
||
if ebx&(1<<28) != 0 {
|
||
rval |= avx512cd
|
||
}
|
||
if ebx&(1<<30) != 0 {
|
||
rval |= avx512bw
|
||
}
|
||
if ebx&(1<<31) != 0 {
|
||
rval |= avx512vl
|
||
}
|
||
// ecx
|
||
if ecx&(1<<1) != 0 {
|
||
rval |= avx512vbmi
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if maxExtendedFunction() >= 0x80000001 {
|
||
_, _, c, d := cpuid(0x80000001)
|
||
if (c & (1 << 5)) != 0 {
|
||
rval |= lzcnt
|
||
rval |= popcnt
|
||
}
|
||
if (d & (1 << 31)) != 0 {
|
||
rval |= amd3dnow
|
||
}
|
||
if (d & (1 << 30)) != 0 {
|
||
rval |= amd3dnowext
|
||
}
|
||
if (d & (1 << 23)) != 0 {
|
||
rval |= mmx
|
||
}
|
||
if (d & (1 << 22)) != 0 {
|
||
rval |= mmxext
|
||
}
|
||
if (c & (1 << 6)) != 0 {
|
||
rval |= sse4a
|
||
}
|
||
if d&(1<<20) != 0 {
|
||
rval |= nx
|
||
}
|
||
if d&(1<<27) != 0 {
|
||
rval |= rdtscp
|
||
}
|
||
|
||
/* Allow for selectively disabling SSE2 functions on AMD processors
|
||
with SSE2 support but not SSE4a. This includes Athlon64, some
|
||
Opteron, and some Sempron processors. MMX, SSE, or 3DNow! are faster
|
||
than SSE2 often enough to utilize this special-case flag.
|
||
AV_CPU_FLAG_SSE2 and AV_CPU_FLAG_SSE2SLOW are both set in this case
|
||
so that SSE2 is used unless explicitly disabled by checking
|
||
AV_CPU_FLAG_SSE2SLOW. */
|
||
if vendorID() != intel &&
|
||
rval&sse2 != 0 && (c&0x00000040) == 0 {
|
||
rval |= sse2slow
|
||
}
|
||
|
||
/* XOP and FMA4 use the AVX instruction coding scheme, so they can't be
|
||
* used unless the OS has AVX support. */
|
||
if (rval & avx) != 0 {
|
||
if (c & 0x00000800) != 0 {
|
||
rval |= xop
|
||
}
|
||
if (c & 0x00010000) != 0 {
|
||
rval |= fma4
|
||
}
|
||
}
|
||
|
||
if vendorID() == intel {
|
||
family, model := familyModel()
|
||
if family == 6 && (model == 9 || model == 13 || model == 14) {
|
||
/* 6/9 (pentium-m "banias"), 6/13 (pentium-m "dothan"), and
|
||
* 6/14 (core1 "yonah") theoretically support sse2, but it's
|
||
* usually slower than mmx. */
|
||
if (rval & sse2) != 0 {
|
||
rval |= sse2slow
|
||
}
|
||
if (rval & sse3) != 0 {
|
||
rval |= sse3slow
|
||
}
|
||
}
|
||
/* The Atom processor has SSSE3 support, which is useful in many cases,
|
||
* but sometimes the SSSE3 version is slower than the SSE2 equivalent
|
||
* on the Atom, but is generally faster on other processors supporting
|
||
* SSSE3. This flag allows for selectively disabling certain SSSE3
|
||
* functions on the Atom. */
|
||
if family == 6 && model == 28 {
|
||
rval |= atom
|
||
}
|
||
}
|
||
}
|
||
return flags(rval)
|
||
}
|
||
|
||
func valAsString(values ...uint32) []byte {
|
||
r := make([]byte, 4*len(values))
|
||
for i, v := range values {
|
||
dst := r[i*4:]
|
||
dst[0] = byte(v & 0xff)
|
||
dst[1] = byte((v >> 8) & 0xff)
|
||
dst[2] = byte((v >> 16) & 0xff)
|
||
dst[3] = byte((v >> 24) & 0xff)
|
||
switch {
|
||
case dst[0] == 0:
|
||
return r[:i*4]
|
||
case dst[1] == 0:
|
||
return r[:i*4+1]
|
||
case dst[2] == 0:
|
||
return r[:i*4+2]
|
||
case dst[3] == 0:
|
||
return r[:i*4+3]
|
||
}
|
||
}
|
||
return r
|
||
}
|