package quic import ( "bytes" "errors" "fmt" "net" "github.com/lucas-clemente/quic-go/internal/ackhandler" "github.com/lucas-clemente/quic-go/internal/handshake" "github.com/lucas-clemente/quic-go/internal/protocol" "github.com/lucas-clemente/quic-go/internal/wire" ) // sentAndReceivedPacketManager is only needed until STOP_WAITING is removed type sentAndReceivedPacketManager struct { ackhandler.SentPacketHandler ackhandler.ReceivedPacketHandler } var _ ackFrameSource = &sentAndReceivedPacketManager{} type packetPackerLegacy struct { destConnID protocol.ConnectionID srcConnID protocol.ConnectionID perspective protocol.Perspective version protocol.VersionNumber cryptoSetup sealingManager divNonce []byte packetNumberGenerator *packetNumberGenerator getPacketNumberLen func(protocol.PacketNumber) protocol.PacketNumberLen cryptoStream cryptoStream framer frameSource acks ackFrameSource omitConnectionID bool maxPacketSize protocol.ByteCount hasSentPacket bool // has the packetPacker already sent a packet numNonRetransmittableAcks int } var _ packer = &packetPackerLegacy{} func newPacketPackerLegacy( destConnID protocol.ConnectionID, srcConnID protocol.ConnectionID, getPacketNumberLen func(protocol.PacketNumber) protocol.PacketNumberLen, remoteAddr net.Addr, // only used for determining the max packet size divNonce []byte, cryptoStream cryptoStream, cryptoSetup sealingManager, framer frameSource, acks ackFrameSource, perspective protocol.Perspective, version protocol.VersionNumber, ) *packetPackerLegacy { return &packetPackerLegacy{ cryptoStream: cryptoStream, cryptoSetup: cryptoSetup, divNonce: divNonce, destConnID: destConnID, srcConnID: srcConnID, perspective: perspective, version: version, framer: framer, acks: acks, getPacketNumberLen: getPacketNumberLen, packetNumberGenerator: newPacketNumberGenerator(1, protocol.SkipPacketAveragePeriodLength), maxPacketSize: getMaxPacketSize(remoteAddr), } } // PackConnectionClose packs a packet that ONLY contains a ConnectionCloseFrame func (p *packetPackerLegacy) PackConnectionClose(ccf *wire.ConnectionCloseFrame) (*packedPacket, error) { frames := []wire.Frame{ccf} encLevel, sealer := p.cryptoSetup.GetSealer() header := p.getHeader(encLevel) raw, err := p.writeAndSealPacket(header, frames, sealer) return &packedPacket{ header: header, raw: raw, frames: frames, encryptionLevel: encLevel, }, err } func (p *packetPackerLegacy) MaybePackAckPacket() (*packedPacket, error) { ack := p.acks.GetAckFrame() if ack == nil { return nil, nil } encLevel, sealer := p.cryptoSetup.GetSealer() header := p.getHeader(encLevel) frames := []wire.Frame{ack} // add a STOP_WAITING frame, if necessary if p.version.UsesStopWaitingFrames() { if swf := p.acks.GetStopWaitingFrame(false); swf != nil { swf.PacketNumber = header.PacketNumber swf.PacketNumberLen = header.PacketNumberLen frames = append(frames, swf) } } raw, err := p.writeAndSealPacket(header, frames, sealer) return &packedPacket{ header: header, raw: raw, frames: frames, encryptionLevel: encLevel, }, err } // PackRetransmission packs a retransmission // For packets sent after completion of the handshake, it might happen that 2 packets have to be sent. // This can happen e.g. when a longer packet number is used in the header. func (p *packetPackerLegacy) PackRetransmission(packet *ackhandler.Packet) ([]*packedPacket, error) { if packet.EncryptionLevel != protocol.EncryptionForwardSecure { p, err := p.packHandshakeRetransmission(packet) return []*packedPacket{p}, err } var controlFrames []wire.Frame var streamFrames []*wire.StreamFrame for _, f := range packet.Frames { if sf, ok := f.(*wire.StreamFrame); ok { sf.DataLenPresent = true streamFrames = append(streamFrames, sf) } else { controlFrames = append(controlFrames, f) } } var packets []*packedPacket encLevel, sealer := p.cryptoSetup.GetSealer() var swf *wire.StopWaitingFrame // add a STOP_WAITING for *every* retransmission if p.version.UsesStopWaitingFrames() { swf = p.acks.GetStopWaitingFrame(true) } for len(controlFrames) > 0 || len(streamFrames) > 0 { var frames []wire.Frame var length protocol.ByteCount header := p.getHeader(encLevel) headerLength, err := header.GetLength(p.version) if err != nil { return nil, err } maxSize := p.maxPacketSize - protocol.ByteCount(sealer.Overhead()) - headerLength if p.version.UsesStopWaitingFrames() { // create a new STOP_WAIITNG Frame, since we might need to send more than one packet as a retransmission stopWaitingFrame := &wire.StopWaitingFrame{ LeastUnacked: swf.LeastUnacked, PacketNumber: header.PacketNumber, PacketNumberLen: header.PacketNumberLen, } length += stopWaitingFrame.Length(p.version) frames = append(frames, stopWaitingFrame) } for len(controlFrames) > 0 { frame := controlFrames[0] frameLen := frame.Length(p.version) if length+frameLen > maxSize { break } length += frameLen frames = append(frames, frame) controlFrames = controlFrames[1:] } // temporarily increase the maxFrameSize by the (minimum) length of the DataLen field // this leads to a properly sized packet in all cases, since we do all the packet length calculations with StreamFrames that have the DataLen set // however, for the last STREAM frame in the packet, we can omit the DataLen, thus yielding a packet of exactly the correct size maxSize += 2 for len(streamFrames) > 0 && length+protocol.MinStreamFrameSize < maxSize { frame := streamFrames[0] frameToAdd := frame sf, err := frame.MaybeSplitOffFrame(maxSize-length, p.version) if err != nil { return nil, err } if sf != nil { frameToAdd = sf } else { streamFrames = streamFrames[1:] } length += frameToAdd.Length(p.version) frames = append(frames, frameToAdd) } if sf, ok := frames[len(frames)-1].(*wire.StreamFrame); ok { sf.DataLenPresent = false } raw, err := p.writeAndSealPacket(header, frames, sealer) if err != nil { return nil, err } packets = append(packets, &packedPacket{ header: header, raw: raw, frames: frames, encryptionLevel: encLevel, }) } return packets, nil } // packHandshakeRetransmission retransmits a handshake packet, that was sent with less than forward-secure encryption func (p *packetPackerLegacy) packHandshakeRetransmission(packet *ackhandler.Packet) (*packedPacket, error) { sealer, err := p.cryptoSetup.GetSealerWithEncryptionLevel(packet.EncryptionLevel) if err != nil { return nil, err } // make sure that the retransmission for an Initial packet is sent as an Initial packet if packet.PacketType == protocol.PacketTypeInitial { p.hasSentPacket = false } header := p.getHeader(packet.EncryptionLevel) header.Type = packet.PacketType var frames []wire.Frame if p.version.UsesStopWaitingFrames() { // pack a STOP_WAITING first swf := p.acks.GetStopWaitingFrame(true) swf.PacketNumber = header.PacketNumber swf.PacketNumberLen = header.PacketNumberLen frames = append([]wire.Frame{swf}, packet.Frames...) } else { frames = packet.Frames } raw, err := p.writeAndSealPacket(header, frames, sealer) return &packedPacket{ header: header, raw: raw, frames: frames, encryptionLevel: packet.EncryptionLevel, }, err } // PackPacket packs a new packet // the other controlFrames are sent in the next packet, but might be queued and sent in the next packet if the packet would overflow MaxPacketSize otherwise func (p *packetPackerLegacy) PackPacket() (*packedPacket, error) { packet, err := p.maybePackCryptoPacket() if err != nil { return nil, err } if packet != nil { return packet, nil } // if this is the first packet to be send, make sure it contains stream data if !p.hasSentPacket && packet == nil { return nil, nil } encLevel, sealer := p.cryptoSetup.GetSealer() header := p.getHeader(encLevel) headerLength, err := header.GetLength(p.version) if err != nil { return nil, err } maxSize := p.maxPacketSize - protocol.ByteCount(sealer.Overhead()) - headerLength frames, err := p.composeNextPacket(header, maxSize, p.canSendData(encLevel)) if err != nil { return nil, err } // Check if we have enough frames to send if len(frames) == 0 { return nil, nil } // check if this packet only contains an ACK (and maybe a STOP_WAITING) if !ackhandler.HasRetransmittableFrames(frames) { if p.numNonRetransmittableAcks >= protocol.MaxNonRetransmittableAcks { frames = append(frames, &wire.PingFrame{}) p.numNonRetransmittableAcks = 0 } else { p.numNonRetransmittableAcks++ } } else { p.numNonRetransmittableAcks = 0 } raw, err := p.writeAndSealPacket(header, frames, sealer) if err != nil { return nil, err } return &packedPacket{ header: header, raw: raw, frames: frames, encryptionLevel: encLevel, }, nil } func (p *packetPackerLegacy) maybePackCryptoPacket() (*packedPacket, error) { if !p.cryptoStream.hasData() { return nil, nil } encLevel, sealer := p.cryptoSetup.GetSealerForCryptoStream() header := p.getHeader(encLevel) headerLength, err := header.GetLength(p.version) if err != nil { return nil, err } maxLen := p.maxPacketSize - protocol.ByteCount(sealer.Overhead()) - protocol.NonForwardSecurePacketSizeReduction - headerLength sf, _ := p.cryptoStream.popStreamFrame(maxLen) sf.DataLenPresent = false frames := []wire.Frame{sf} raw, err := p.writeAndSealPacket(header, frames, sealer) if err != nil { return nil, err } return &packedPacket{ header: header, raw: raw, frames: frames, encryptionLevel: encLevel, }, nil } func (p *packetPackerLegacy) composeNextPacket( header *wire.Header, // only needed to fill in the STOP_WAITING frame maxFrameSize protocol.ByteCount, canSendStreamFrames bool, ) ([]wire.Frame, error) { var length protocol.ByteCount var frames []wire.Frame // STOP_WAITING and ACK will always fit // ACKs need to go first, so that the sentPacketHandler will recognize them if ack := p.acks.GetAckFrame(); ack != nil { frames = append(frames, ack) length += ack.Length(p.version) // add a STOP_WAITING, for gQUIC if p.version.UsesStopWaitingFrames() { if swf := p.acks.GetStopWaitingFrame(false); swf != nil { swf.PacketNumber = header.PacketNumber swf.PacketNumberLen = header.PacketNumberLen frames = append(frames, swf) length += swf.Length(p.version) } } } var lengthAdded protocol.ByteCount frames, lengthAdded = p.framer.AppendControlFrames(frames, maxFrameSize-length) length += lengthAdded if !canSendStreamFrames { return frames, nil } // temporarily increase the maxFrameSize by the (minimum) length of the DataLen field // this leads to a properly sized packet in all cases, since we do all the packet length calculations with StreamFrames that have the DataLen set // however, for the last STREAM frame in the packet, we can omit the DataLen, thus yielding a packet of exactly the correct size maxFrameSize += 2 frames = p.framer.AppendStreamFrames(frames, maxFrameSize-length) if len(frames) > 0 { lastFrame := frames[len(frames)-1] if sf, ok := lastFrame.(*wire.StreamFrame); ok { sf.DataLenPresent = false } } return frames, nil } func (p *packetPackerLegacy) getHeader(encLevel protocol.EncryptionLevel) *wire.Header { pnum := p.packetNumberGenerator.Peek() packetNumberLen := p.getPacketNumberLen(pnum) header := &wire.Header{ PacketNumber: pnum, PacketNumberLen: packetNumberLen, Version: p.version, } if p.version.UsesIETFHeaderFormat() && encLevel != protocol.EncryptionForwardSecure { header.IsLongHeader = true header.SrcConnectionID = p.srcConnID header.PacketNumberLen = protocol.PacketNumberLen4 if !p.hasSentPacket && p.perspective == protocol.PerspectiveClient { header.Type = protocol.PacketTypeInitial } else { header.Type = protocol.PacketTypeHandshake } } if !p.omitConnectionID || encLevel != protocol.EncryptionForwardSecure { header.DestConnectionID = p.destConnID } if p.perspective == protocol.PerspectiveServer && encLevel == protocol.EncryptionSecure { header.Type = protocol.PacketType0RTT header.DiversificationNonce = p.divNonce } if p.perspective == protocol.PerspectiveClient && encLevel != protocol.EncryptionForwardSecure { header.VersionFlag = true } return header } func (p *packetPackerLegacy) writeAndSealPacket( header *wire.Header, frames []wire.Frame, sealer handshake.Sealer, ) ([]byte, error) { raw := *getPacketBuffer() buffer := bytes.NewBuffer(raw[:0]) if err := header.Write(buffer, p.perspective, p.version); err != nil { return nil, err } payloadStartIndex := buffer.Len() for _, frame := range frames { if err := frame.Write(buffer, p.version); err != nil { return nil, err } } if size := protocol.ByteCount(buffer.Len() + sealer.Overhead()); size > p.maxPacketSize { return nil, fmt.Errorf("PacketPacker BUG: packet too large (%d bytes, allowed %d bytes)", size, p.maxPacketSize) } raw = raw[0:buffer.Len()] _ = sealer.Seal(raw[payloadStartIndex:payloadStartIndex], raw[payloadStartIndex:], header.PacketNumber, raw[:payloadStartIndex]) raw = raw[0 : buffer.Len()+sealer.Overhead()] num := p.packetNumberGenerator.Pop() if num != header.PacketNumber { return nil, errors.New("packetPacker BUG: Peeked and Popped packet numbers do not match") } p.hasSentPacket = true return raw, nil } func (p *packetPackerLegacy) canSendData(encLevel protocol.EncryptionLevel) bool { if p.perspective == protocol.PerspectiveClient { return encLevel >= protocol.EncryptionSecure } return encLevel == protocol.EncryptionForwardSecure } func (p *packetPackerLegacy) ChangeDestConnectionID(connID protocol.ConnectionID) { panic("changing connection IDs not supported by gQUIC") } func (p *packetPackerLegacy) HandleTransportParameters(params *handshake.TransportParameters) { p.omitConnectionID = params.OmitConnectionID }