// Copyright 2015 Light Code Labs, LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Package diagnostics implements the client for server-side diagnostics // of the network. Functions in this package are synchronous and blocking // unless otherwise specified. For convenience, most functions here do // not return errors, but errors are logged to the standard logger. // // To use this package, first call Init(). You can then call any of the // collection/aggregation functions. Call StartEmitting() when you are // ready to begin sending diagnostic updates. // // When collecting metrics (functions like Set, AppendUnique, or Increment), // it may be desirable and even recommended to invoke them in a new // goroutine (use the go keyword) in case there is lock contention; // they are thread-safe (unless noted), and you may not want them to // block the main thread of execution. However, sometimes blocking // may be necessary too; for example, adding startup metrics to the // buffer before the call to StartEmitting(). // // This package is designed to be as fast and space-efficient as reasonably // possible, so that it does not disrupt the flow of execution. package diagnostics import ( "bytes" "encoding/json" "fmt" "log" "net/http" "strconv" "strings" "sync" "time" "github.com/google/uuid" ) // logEmit calls emit and then logs the error, if any. // See docs for emit. func logEmit(final bool) { err := emit(final) if err != nil { log.Printf("[ERROR] Sending diagnostics: %v", err) } } // emit sends an update to the diagnostics server. // Set final to true if this is the last call to emit. // If final is true, no future updates will be scheduled. // Otherwise, the next update will be scheduled. func emit(final bool) error { if !enabled { return fmt.Errorf("diagnostics not enabled") } // ensure only one update happens at a time; // skip update if previous one still in progress updateMu.Lock() if updating { updateMu.Unlock() log.Println("[NOTICE] Skipping this diagnostics update because previous one is still working") return nil } updating = true updateMu.Unlock() defer func() { updateMu.Lock() updating = false updateMu.Unlock() }() // terminate any pending update if this is the last one if final { updateTimerMu.Lock() updateTimer.Stop() updateTimer = nil updateTimerMu.Unlock() } payloadBytes, err := makePayloadAndResetBuffer() if err != nil { return err } // this will hold the server's reply var reply Response // transmit the payload - use a loop to retry in case of failure for i := 0; i < 4; i++ { if i > 0 && err != nil { // don't hammer the server; first failure might have been // a fluke, but back off more after that log.Printf("[WARNING] Sending diagnostics (attempt %d): %v - backing off and retrying", i, err) time.Sleep(time.Duration((i+1)*(i+1)*(i+1)) * time.Second) } // send it var resp *http.Response resp, err = httpClient.Post(endpoint+instanceUUID.String(), "application/json", bytes.NewReader(payloadBytes)) if err != nil { continue } // ensure we can read the response if ct := resp.Header.Get("Content-Type"); (resp.StatusCode < 300 || resp.StatusCode >= 400) && !strings.Contains(ct, "json") { err = fmt.Errorf("diagnostics server replied with unknown content-type: '%s' and HTTP %s", ct, resp.Status) resp.Body.Close() continue } // read the response body err = json.NewDecoder(resp.Body).Decode(&reply) resp.Body.Close() // close response body as soon as we're done with it if err != nil { continue } // make sure we didn't send the update too soon; if so, // just wait and try again -- this is a special case of // error that we handle differently, as you can see if resp.StatusCode == http.StatusTooManyRequests { if reply.NextUpdate <= 0 { raStr := resp.Header.Get("Retry-After") if ra, err := strconv.Atoi(raStr); err == nil { reply.NextUpdate = time.Duration(ra) * time.Second } } if !final { log.Printf("[NOTICE] Sending diagnostics: we were too early; waiting %s before trying again", reply.NextUpdate) time.Sleep(reply.NextUpdate) continue } } else if resp.StatusCode >= 400 { err = fmt.Errorf("diagnostics server returned status code %d", resp.StatusCode) continue } break } if err == nil && !final { // (remember, if there was an error, we return it // below, so it WILL get logged if it's supposed to) log.Println("[INFO] Sending diagnostics: success") } // even if there was an error after all retries, we should // schedule the next update using our default update // interval because the server might be healthy later // ensure we won't slam the diagnostics server if reply.NextUpdate < 1*time.Second { reply.NextUpdate = defaultUpdateInterval } // schedule the next update (if this wasn't the last one and // if the remote server didn't tell us to stop sending) if !final && !reply.Stop { updateTimerMu.Lock() updateTimer = time.AfterFunc(reply.NextUpdate, func() { logEmit(false) }) updateTimerMu.Unlock() } return err } // makePayloadAndResetBuffer prepares a payload // by emptying the collection buffer. It returns // the bytes of the payload to send to the server. // Since the buffer is reset by this, if the // resulting byte slice is lost, the payload is // gone with it. func makePayloadAndResetBuffer() ([]byte, error) { bufCopy := resetBuffer() // encode payload in preparation for transmission payload := Payload{ InstanceID: instanceUUID.String(), Timestamp: time.Now().UTC(), Data: bufCopy, } return json.Marshal(payload) } // resetBuffer makes a local pointer to the buffer, // then resets the buffer by assigning to be a newly- // made value to clear it out, then sets the buffer // item count to 0. It returns the copied pointer to // the original map so the old buffer value can be // used locally. func resetBuffer() map[string]interface{} { bufferMu.Lock() bufCopy := buffer buffer = make(map[string]interface{}) bufferItemCount = 0 bufferMu.Unlock() return bufCopy } // Response contains the body of a response from the // diagnostics server. type Response struct { // NextUpdate is how long to wait before the next update. NextUpdate time.Duration `json:"next_update"` // Stop instructs the diagnostics server to stop sending // diagnostics. This would only be done under extenuating // circumstances, but we are prepared for it nonetheless. Stop bool `json:"stop,omitempty"` // Error will be populated with an error message, if any. // This field should be empty if the status code is < 400. Error string `json:"error,omitempty"` } // Payload is the data that gets sent to the diagnostics server. type Payload struct { // The universally unique ID of the instance InstanceID string `json:"instance_id"` // The UTC timestamp of the transmission Timestamp time.Time `json:"timestamp"` // The timestamp before which the next update is expected // (NOT populated by client - the server fills this in // before it stores the data) ExpectNext time.Time `json:"expect_next,omitempty"` // The metrics Data map[string]interface{} `json:"data,omitempty"` } // Int returns the value of the data keyed by key // if it is an integer; otherwise it returns 0. func (p Payload) Int(key string) int { val, _ := p.Data[key] switch p.Data[key].(type) { case int: return val.(int) case float64: // after JSON-decoding, int becomes float64... return int(val.(float64)) } return 0 } // countingSet implements a set that counts how many // times a key is inserted. It marshals to JSON in a // way such that keys are converted to values next // to their associated counts. type countingSet map[interface{}]int // MarshalJSON implements the json.Marshaler interface. // It converts the set to an array so that the values // are JSON object values instead of keys, since keys // are difficult to query in databases. func (s countingSet) MarshalJSON() ([]byte, error) { type Item struct { Value interface{} `json:"value"` Count int `json:"count"` } var list []Item for k, v := range s { list = append(list, Item{Value: k, Count: v}) } return json.Marshal(list) } var ( // httpClient should be used for HTTP requests. It // is configured with a timeout for reliability. httpClient = http.Client{Timeout: 1 * time.Minute} // buffer holds the data that we are building up to send. buffer = make(map[string]interface{}) bufferItemCount = 0 bufferMu sync.RWMutex // protects both the buffer and its count // updating is used to ensure only one // update happens at a time. updating bool updateMu sync.Mutex // updateTimer fires off the next update. // If no update is scheduled, this is nil. updateTimer *time.Timer updateTimerMu sync.Mutex // instanceUUID is the ID of the current instance. // This MUST be set to emit diagnostics. // This MUST NOT be openly exposed to clients, for privacy. instanceUUID uuid.UUID // enabled indicates whether the package has // been initialized and can be actively used. enabled bool // maxBufferItems is the maximum number of items we'll allow // in the buffer before we start dropping new ones, in a // rough (simple) attempt to keep memory use under control. maxBufferItems = 100000 ) const ( // endpoint is the base URL to remote diagnostics server; // the instance ID will be appended to it. endpoint = "https://diagnostics-staging.caddyserver.com/update/" // TODO: make configurable, "http://localhost:8085/update/" // defaultUpdateInterval is how long to wait before emitting // more diagnostic data if all retires fail. This value is // only used if the client receives a nonsensical value, or // doesn't send one at all, or if a connection can't be made, // likely indicating a problem with the server. Thus, this // value should be a long duration to help alleviate extra // load on the server. defaultUpdateInterval = 1 * time.Hour )