// Package httpserver implements an HTTP server on top of Caddy. package httpserver import ( "context" "crypto/tls" "fmt" "io" "log" "net" "net/http" "os" "runtime" "strings" "sync" "time" "github.com/lucas-clemente/quic-go/h2quic" "github.com/mholt/caddy" "github.com/mholt/caddy/caddyhttp/staticfiles" "github.com/mholt/caddy/caddytls" ) // Server is the HTTP server implementation. type Server struct { Server *http.Server quicServer *h2quic.Server listener net.Listener listenerMu sync.Mutex sites []*SiteConfig connTimeout time.Duration // max time to wait for a connection before force stop tlsGovChan chan struct{} // close to stop the TLS maintenance goroutine vhosts *vhostTrie tlsConfig caddytls.ConfigGroup } // ensure it satisfies the interface var _ caddy.GracefulServer = new(Server) // NewServer creates a new Server instance that will listen on addr // and will serve the sites configured in group. func NewServer(addr string, group []*SiteConfig) (*Server, error) { s := &Server{ Server: makeHTTPServer(addr, group), vhosts: newVHostTrie(), sites: group, connTimeout: GracefulTimeout, } s.Server.Handler = s // this is weird, but whatever tlsh := &tlsHandler{next: s.Server.Handler} s.Server.ConnState = func(c net.Conn, cs http.ConnState) { // when a connection closes or is hijacked, delete its entry // in the map, because we are done with it. if tlsh.listener != nil { if cs == http.StateHijacked || cs == http.StateClosed { tlsh.listener.helloInfosMu.Lock() delete(tlsh.listener.helloInfos, c.RemoteAddr().String()) tlsh.listener.helloInfosMu.Unlock() } } } // Disable HTTP/2 if desired if !HTTP2 { s.Server.TLSNextProto = make(map[string]func(*http.Server, *tls.Conn, http.Handler)) } // Enable QUIC if desired if QUIC { s.quicServer = &h2quic.Server{Server: s.Server} s.Server.Handler = s.wrapWithSvcHeaders(s.Server.Handler) } // Set up TLS configuration tlsConfigs := make(caddytls.ConfigGroup) var allConfigs []*caddytls.Config for _, site := range group { if err := site.TLS.Build(tlsConfigs); err != nil { return nil, err } tlsConfigs[site.TLS.Hostname] = site.TLS allConfigs = append(allConfigs, site.TLS) } // Check if configs are valid if err := caddytls.CheckConfigs(allConfigs); err != nil { return nil, err } s.tlsConfig = tlsConfigs if caddytls.HasTLSEnabled(allConfigs) { s.Server.TLSConfig = &tls.Config{ GetConfigForClient: s.tlsConfig.GetConfigForClient, GetCertificate: s.tlsConfig.GetCertificate, } } // As of Go 1.7, HTTP/2 is enabled only if NextProtos includes the string "h2" if HTTP2 && s.Server.TLSConfig != nil && len(s.Server.TLSConfig.NextProtos) == 0 { s.Server.TLSConfig.NextProtos = []string{"h2"} } if s.Server.TLSConfig != nil { s.Server.Handler = tlsh } // Compile custom middleware for every site (enables virtual hosting) for _, site := range group { stack := Handler(staticfiles.FileServer{Root: http.Dir(site.Root), Hide: site.HiddenFiles}) for i := len(site.middleware) - 1; i >= 0; i-- { stack = site.middleware[i](stack) } site.middlewareChain = stack s.vhosts.Insert(site.Addr.VHost(), site) } return s, nil } func (s *Server) wrapWithSvcHeaders(previousHandler http.Handler) http.HandlerFunc { return func(w http.ResponseWriter, r *http.Request) { s.quicServer.SetQuicHeaders(w.Header()) previousHandler.ServeHTTP(w, r) } } // Listen creates an active listener for s that can be // used to serve requests. func (s *Server) Listen() (net.Listener, error) { if s.Server == nil { return nil, fmt.Errorf("Server field is nil") } ln, err := net.Listen("tcp", s.Server.Addr) if err != nil { var succeeded bool if runtime.GOOS == "windows" { // Windows has been known to keep sockets open even after closing the listeners. // Tests reveal this error case easily because they call Start() then Stop() // in succession. TODO: Better way to handle this? And why limit this to Windows? for i := 0; i < 20; i++ { time.Sleep(100 * time.Millisecond) ln, err = net.Listen("tcp", s.Server.Addr) if err == nil { succeeded = true break } } } if !succeeded { return nil, err } } // Very important to return a concrete caddy.Listener // implementation for graceful restarts. return ln.(*net.TCPListener), nil } // ListenPacket creates udp connection for QUIC if it is enabled, func (s *Server) ListenPacket() (net.PacketConn, error) { if QUIC { udpAddr, err := net.ResolveUDPAddr("udp", s.Server.Addr) if err != nil { return nil, err } return net.ListenUDP("udp", udpAddr) } return nil, nil } // Serve serves requests on ln. It blocks until ln is closed. func (s *Server) Serve(ln net.Listener) error { if tcpLn, ok := ln.(*net.TCPListener); ok { ln = tcpKeepAliveListener{TCPListener: tcpLn} } s.listenerMu.Lock() s.listener = ln s.listenerMu.Unlock() if s.Server.TLSConfig != nil { // Create TLS listener - note that we do not replace s.listener // with this TLS listener; tls.listener is unexported and does // not implement the File() method we need for graceful restarts // on POSIX systems. // TODO: Is this ^ still relevant anymore? Maybe we can now that it's a net.Listener... ln = newTLSListener(ln, s.Server.TLSConfig, s.Server.ReadTimeout) if handler, ok := s.Server.Handler.(*tlsHandler); ok { handler.listener = ln.(*tlsHelloListener) } // Rotate TLS session ticket keys s.tlsGovChan = caddytls.RotateSessionTicketKeys(s.Server.TLSConfig) } err := s.Server.Serve(ln) if QUIC { s.quicServer.Close() } return err } // ServePacket serves QUIC requests on pc until it is closed. func (s *Server) ServePacket(pc net.PacketConn) error { if QUIC { err := s.quicServer.Serve(pc.(*net.UDPConn)) return fmt.Errorf("serving QUIC connections: %v", err) } return nil } // ServeHTTP is the entry point of all HTTP requests. func (s *Server) ServeHTTP(w http.ResponseWriter, r *http.Request) { defer func() { // We absolutely need to be sure we stay alive up here, // even though, in theory, the errors middleware does this. if rec := recover(); rec != nil { log.Printf("[PANIC] %v", rec) DefaultErrorFunc(w, r, http.StatusInternalServerError) } }() w.Header().Set("Server", "Caddy") sanitizePath(r) status, _ := s.serveHTTP(w, r) // Fallback error response in case error handling wasn't chained in if status >= 400 { DefaultErrorFunc(w, r, status) } } func (s *Server) serveHTTP(w http.ResponseWriter, r *http.Request) (int, error) { // strip out the port because it's not used in virtual // hosting; the port is irrelevant because each listener // is on a different port. hostname, _, err := net.SplitHostPort(r.Host) if err != nil { hostname = r.Host } // look up the virtualhost; if no match, serve error vhost, pathPrefix := s.vhosts.Match(hostname + r.URL.Path) if vhost == nil { // check for ACME challenge even if vhost is nil; // could be a new host coming online soon if caddytls.HTTPChallengeHandler(w, r, "localhost", caddytls.DefaultHTTPAlternatePort) { return 0, nil } // otherwise, log the error and write a message to the client remoteHost, _, err := net.SplitHostPort(r.RemoteAddr) if err != nil { remoteHost = r.RemoteAddr } WriteTextResponse(w, http.StatusNotFound, "No such site at "+s.Server.Addr) log.Printf("[INFO] %s - No such site at %s (Remote: %s, Referer: %s)", hostname, s.Server.Addr, remoteHost, r.Header.Get("Referer")) return 0, nil } // we still check for ACME challenge if the vhost exists, // because we must apply its HTTP challenge config settings if s.proxyHTTPChallenge(vhost, w, r) { return 0, nil } // trim the path portion of the site address from the beginning of // the URL path, so a request to example.com/foo/blog on the site // defined as example.com/foo appears as /blog instead of /foo/blog. if pathPrefix != "/" { r.URL.Path = strings.TrimPrefix(r.URL.Path, pathPrefix) if !strings.HasPrefix(r.URL.Path, "/") { r.URL.Path = "/" + r.URL.Path } } // Apply the path-based request body size limit // The error returned by MaxBytesReader is meant to be handled // by whichever middleware/plugin that receives it when calling // .Read() or a similar method on the request body if r.Body != nil { for _, pathlimit := range vhost.MaxRequestBodySizes { if Path(r.URL.Path).Matches(pathlimit.Path) { r.Body = MaxBytesReader(w, r.Body, pathlimit.Limit) break } } } return vhost.middlewareChain.ServeHTTP(w, r) } // proxyHTTPChallenge solves the ACME HTTP challenge if r is the HTTP // request for the challenge. If it is, and if the request has been // fulfilled (response written), true is returned; false otherwise. // If you don't have a vhost, just call the challenge handler directly. func (s *Server) proxyHTTPChallenge(vhost *SiteConfig, w http.ResponseWriter, r *http.Request) bool { if vhost.Addr.Port != caddytls.HTTPChallengePort { return false } if vhost.TLS != nil && vhost.TLS.Manual { return false } altPort := caddytls.DefaultHTTPAlternatePort if vhost.TLS != nil && vhost.TLS.AltHTTPPort != "" { altPort = vhost.TLS.AltHTTPPort } return caddytls.HTTPChallengeHandler(w, r, vhost.ListenHost, altPort) } // Address returns the address s was assigned to listen on. func (s *Server) Address() string { return s.Server.Addr } // Stop stops s gracefully (or forcefully after timeout) and // closes its listener. func (s *Server) Stop() error { ctx, cancel := context.WithTimeout(context.Background(), s.connTimeout) defer cancel() err := s.Server.Shutdown(ctx) if err != nil { return err } // signal any TLS governor goroutines to exit if s.tlsGovChan != nil { close(s.tlsGovChan) } return nil } // sanitizePath collapses any ./ ../ /// madness // which helps prevent path traversal attacks. // Note to middleware: use URL.RawPath If you need // the "original" URL.Path value. func sanitizePath(r *http.Request) { if r.URL.Path == "/" { return } cleanedPath := CleanPath(r.URL.Path) if cleanedPath == "." { r.URL.Path = "/" } else { if !strings.HasPrefix(cleanedPath, "/") { cleanedPath = "/" + cleanedPath } if strings.HasSuffix(r.URL.Path, "/") && !strings.HasSuffix(cleanedPath, "/") { cleanedPath = cleanedPath + "/" } r.URL.Path = cleanedPath } } // OnStartupComplete lists the sites served by this server // and any relevant information, assuming caddy.Quiet == false. func (s *Server) OnStartupComplete() { if caddy.Quiet { return } for _, site := range s.sites { output := site.Addr.String() if caddy.IsLoopback(s.Address()) && !caddy.IsLoopback(site.Addr.Host) { output += " (only accessible on this machine)" } fmt.Println(output) log.Println(output) } } // defaultTimeouts stores the default timeout values to use // if left unset by user configuration. Default timeouts, // especially for ReadTimeout, are important for mitigating // slowloris attacks. var defaultTimeouts = Timeouts{ ReadTimeout: 10 * time.Second, ReadHeaderTimeout: 10 * time.Second, WriteTimeout: 20 * time.Second, IdleTimeout: 2 * time.Minute, } // makeHTTPServer makes an http.Server from the group of configs // in a way that configures timeouts (or, if not set, it uses the // default timeouts) and other http.Server properties by combining // the configuration of each SiteConfig in the group. (Timeouts // are important for mitigating slowloris attacks.) func makeHTTPServer(addr string, group []*SiteConfig) *http.Server { s := &http.Server{Addr: addr} // find the minimum duration configured for each timeout var min Timeouts for _, cfg := range group { if cfg.Timeouts.ReadTimeoutSet && (!min.ReadTimeoutSet || cfg.Timeouts.ReadTimeout < min.ReadTimeout) { min.ReadTimeoutSet = true min.ReadTimeout = cfg.Timeouts.ReadTimeout } if cfg.Timeouts.ReadHeaderTimeoutSet && (!min.ReadHeaderTimeoutSet || cfg.Timeouts.ReadHeaderTimeout < min.ReadHeaderTimeout) { min.ReadHeaderTimeoutSet = true min.ReadHeaderTimeout = cfg.Timeouts.ReadHeaderTimeout } if cfg.Timeouts.WriteTimeoutSet && (!min.WriteTimeoutSet || cfg.Timeouts.WriteTimeout < min.WriteTimeout) { min.WriteTimeoutSet = true min.WriteTimeout = cfg.Timeouts.WriteTimeout } if cfg.Timeouts.IdleTimeoutSet && (!min.IdleTimeoutSet || cfg.Timeouts.IdleTimeout < min.IdleTimeout) { min.IdleTimeoutSet = true min.IdleTimeout = cfg.Timeouts.IdleTimeout } } // for the values that were not set, use defaults if !min.ReadTimeoutSet { min.ReadTimeout = defaultTimeouts.ReadTimeout } if !min.ReadHeaderTimeoutSet { min.ReadHeaderTimeout = defaultTimeouts.ReadHeaderTimeout } if !min.WriteTimeoutSet { min.WriteTimeout = defaultTimeouts.WriteTimeout } if !min.IdleTimeoutSet { min.IdleTimeout = defaultTimeouts.IdleTimeout } // set the final values on the server s.ReadTimeout = min.ReadTimeout s.ReadHeaderTimeout = min.ReadHeaderTimeout s.WriteTimeout = min.WriteTimeout s.IdleTimeout = min.IdleTimeout return s } // tcpKeepAliveListener sets TCP keep-alive timeouts on accepted // connections. It's used by ListenAndServe and ListenAndServeTLS so // dead TCP connections (e.g. closing laptop mid-download) eventually // go away. // // Borrowed from the Go standard library. type tcpKeepAliveListener struct { *net.TCPListener } // Accept accepts the connection with a keep-alive enabled. func (ln tcpKeepAliveListener) Accept() (c net.Conn, err error) { tc, err := ln.AcceptTCP() if err != nil { return } tc.SetKeepAlive(true) tc.SetKeepAlivePeriod(3 * time.Minute) return tc, nil } // File implements caddy.Listener; it returns the underlying file of the listener. func (ln tcpKeepAliveListener) File() (*os.File, error) { return ln.TCPListener.File() } // MaxBytesExceeded is the error type returned by MaxBytesReader // when the request body exceeds the limit imposed type MaxBytesExceeded struct{} func (err MaxBytesExceeded) Error() string { return "http: request body too large" } // MaxBytesReader and its associated methods are borrowed from the // Go Standard library (comments intact). The only difference is that // it returns a MaxBytesExceeded error instead of a generic error message // when the request body has exceeded the requested limit func MaxBytesReader(w http.ResponseWriter, r io.ReadCloser, n int64) io.ReadCloser { return &maxBytesReader{w: w, r: r, n: n} } type maxBytesReader struct { w http.ResponseWriter r io.ReadCloser // underlying reader n int64 // max bytes remaining err error // sticky error } func (l *maxBytesReader) Read(p []byte) (n int, err error) { if l.err != nil { return 0, l.err } if len(p) == 0 { return 0, nil } // If they asked for a 32KB byte read but only 5 bytes are // remaining, no need to read 32KB. 6 bytes will answer the // question of the whether we hit the limit or go past it. if int64(len(p)) > l.n+1 { p = p[:l.n+1] } n, err = l.r.Read(p) if int64(n) <= l.n { l.n -= int64(n) l.err = err return n, err } n = int(l.n) l.n = 0 // The server code and client code both use // maxBytesReader. This "requestTooLarge" check is // only used by the server code. To prevent binaries // which only using the HTTP Client code (such as // cmd/go) from also linking in the HTTP server, don't // use a static type assertion to the server // "*response" type. Check this interface instead: type requestTooLarger interface { requestTooLarge() } if res, ok := l.w.(requestTooLarger); ok { res.requestTooLarge() } l.err = MaxBytesExceeded{} return n, l.err } func (l *maxBytesReader) Close() error { return l.r.Close() } // DefaultErrorFunc responds to an HTTP request with a simple description // of the specified HTTP status code. func DefaultErrorFunc(w http.ResponseWriter, r *http.Request, status int) { WriteTextResponse(w, status, fmt.Sprintf("%d %s\n", status, http.StatusText(status))) } // WriteTextResponse writes body with code status to w. The body will // be interpreted as plain text. func WriteTextResponse(w http.ResponseWriter, status int, body string) { w.Header().Set("Content-Type", "text/plain; charset=utf-8") w.Header().Set("X-Content-Type-Options", "nosniff") w.WriteHeader(status) w.Write([]byte(body)) }