package quic import ( "context" "crypto/tls" "errors" "fmt" "net" "sync" "time" "github.com/lucas-clemente/quic-go/internal/ackhandler" "github.com/lucas-clemente/quic-go/internal/congestion" "github.com/lucas-clemente/quic-go/internal/crypto" "github.com/lucas-clemente/quic-go/internal/flowcontrol" "github.com/lucas-clemente/quic-go/internal/handshake" "github.com/lucas-clemente/quic-go/internal/protocol" "github.com/lucas-clemente/quic-go/internal/utils" "github.com/lucas-clemente/quic-go/internal/wire" "github.com/lucas-clemente/quic-go/qerr" ) type unpacker interface { Unpack(headerBinary []byte, hdr *wire.Header, data []byte) (*unpackedPacket, error) } type streamGetter interface { GetOrOpenReceiveStream(protocol.StreamID) (receiveStreamI, error) GetOrOpenSendStream(protocol.StreamID) (sendStreamI, error) } type streamManager interface { GetOrOpenSendStream(protocol.StreamID) (sendStreamI, error) GetOrOpenReceiveStream(protocol.StreamID) (receiveStreamI, error) OpenStream() (Stream, error) OpenUniStream() (SendStream, error) OpenStreamSync() (Stream, error) OpenUniStreamSync() (SendStream, error) AcceptStream() (Stream, error) AcceptUniStream() (ReceiveStream, error) DeleteStream(protocol.StreamID) error UpdateLimits(*handshake.TransportParameters) HandleMaxStreamIDFrame(*wire.MaxStreamIDFrame) error CloseWithError(error) } type receivedPacket struct { remoteAddr net.Addr header *wire.Header data []byte rcvTime time.Time } var ( newCryptoSetup = handshake.NewCryptoSetup newCryptoSetupClient = handshake.NewCryptoSetupClient ) type closeError struct { err error remote bool } // A Session is a QUIC session type session struct { connectionID protocol.ConnectionID perspective protocol.Perspective version protocol.VersionNumber config *Config conn connection streamsMap streamManager cryptoStream cryptoStreamI rttStats *congestion.RTTStats sentPacketHandler ackhandler.SentPacketHandler receivedPacketHandler ackhandler.ReceivedPacketHandler streamFramer *streamFramer windowUpdateQueue *windowUpdateQueue connFlowController flowcontrol.ConnectionFlowController unpacker unpacker packer *packetPacker cryptoSetup handshake.CryptoSetup receivedPackets chan *receivedPacket sendingScheduled chan struct{} // closeChan is used to notify the run loop that it should terminate. closeChan chan closeError closeOnce sync.Once ctx context.Context ctxCancel context.CancelFunc // when we receive too many undecryptable packets during the handshake, we send a Public reset // but only after a time of protocol.PublicResetTimeout has passed undecryptablePackets []*receivedPacket receivedTooManyUndecrytablePacketsTime time.Time // this channel is passed to the CryptoSetup and receives the transport parameters, as soon as the peer sends them paramsChan <-chan handshake.TransportParameters // the handshakeEvent channel is passed to the CryptoSetup. // It receives when it makes sense to try decrypting undecryptable packets. handshakeEvent <-chan struct{} // handshakeChan is returned by handshakeStatus. // It receives any error that might occur during the handshake. // It is closed when the handshake is complete. handshakeChan chan error handshakeComplete bool receivedFirstPacket bool // since packet numbers start at 0, we can't use largestRcvdPacketNumber != 0 for this receivedFirstForwardSecurePacket bool lastRcvdPacketNumber protocol.PacketNumber // Used to calculate the next packet number from the truncated wire // representation, and sent back in public reset packets largestRcvdPacketNumber protocol.PacketNumber sessionCreationTime time.Time lastNetworkActivityTime time.Time // pacingDeadline is the time when the next packet should be sent pacingDeadline time.Time peerParams *handshake.TransportParameters timer *utils.Timer // keepAlivePingSent stores whether a Ping frame was sent to the peer or not // it is reset as soon as we receive a packet from the peer keepAlivePingSent bool } var _ Session = &session{} var _ streamSender = &session{} // newSession makes a new session func newSession( conn connection, v protocol.VersionNumber, connectionID protocol.ConnectionID, scfg *handshake.ServerConfig, tlsConf *tls.Config, config *Config, ) (packetHandler, error) { paramsChan := make(chan handshake.TransportParameters) handshakeEvent := make(chan struct{}, 1) s := &session{ conn: conn, connectionID: connectionID, perspective: protocol.PerspectiveServer, version: v, config: config, handshakeEvent: handshakeEvent, paramsChan: paramsChan, } s.preSetup() transportParams := &handshake.TransportParameters{ StreamFlowControlWindow: protocol.ReceiveStreamFlowControlWindow, ConnectionFlowControlWindow: protocol.ReceiveConnectionFlowControlWindow, MaxStreams: uint32(s.config.MaxIncomingStreams), IdleTimeout: s.config.IdleTimeout, } cs, err := newCryptoSetup( s.cryptoStream, s.connectionID, s.conn.RemoteAddr(), s.version, scfg, transportParams, s.config.Versions, s.config.AcceptCookie, paramsChan, handshakeEvent, ) if err != nil { return nil, err } s.cryptoSetup = cs return s, s.postSetup(1) } // declare this as a variable, so that we can it mock it in the tests var newClientSession = func( conn connection, hostname string, v protocol.VersionNumber, connectionID protocol.ConnectionID, tlsConf *tls.Config, config *Config, initialVersion protocol.VersionNumber, negotiatedVersions []protocol.VersionNumber, // needed for validation of the GQUIC version negotiation ) (packetHandler, error) { paramsChan := make(chan handshake.TransportParameters) handshakeEvent := make(chan struct{}, 1) s := &session{ conn: conn, connectionID: connectionID, perspective: protocol.PerspectiveClient, version: v, config: config, handshakeEvent: handshakeEvent, paramsChan: paramsChan, } s.preSetup() transportParams := &handshake.TransportParameters{ StreamFlowControlWindow: protocol.ReceiveStreamFlowControlWindow, ConnectionFlowControlWindow: protocol.ReceiveConnectionFlowControlWindow, MaxStreams: uint32(s.config.MaxIncomingStreams), IdleTimeout: s.config.IdleTimeout, OmitConnectionID: s.config.RequestConnectionIDOmission, } cs, err := newCryptoSetupClient( s.cryptoStream, hostname, s.connectionID, s.version, tlsConf, transportParams, paramsChan, handshakeEvent, initialVersion, negotiatedVersions, ) if err != nil { return nil, err } s.cryptoSetup = cs return s, s.postSetup(1) } func newTLSServerSession( conn connection, connectionID protocol.ConnectionID, initialPacketNumber protocol.PacketNumber, config *Config, tls handshake.MintTLS, cryptoStreamConn *handshake.CryptoStreamConn, nullAEAD crypto.AEAD, peerParams *handshake.TransportParameters, v protocol.VersionNumber, ) (packetHandler, error) { handshakeEvent := make(chan struct{}, 1) s := &session{ conn: conn, config: config, connectionID: connectionID, perspective: protocol.PerspectiveServer, version: v, handshakeEvent: handshakeEvent, } s.preSetup() s.cryptoSetup = handshake.NewCryptoSetupTLSServer( tls, cryptoStreamConn, nullAEAD, handshakeEvent, v, ) if err := s.postSetup(initialPacketNumber); err != nil { return nil, err } s.peerParams = peerParams s.processTransportParameters(peerParams) s.unpacker = &packetUnpacker{aead: s.cryptoSetup, version: s.version} return s, nil } // declare this as a variable, such that we can it mock it in the tests var newTLSClientSession = func( conn connection, hostname string, v protocol.VersionNumber, connectionID protocol.ConnectionID, config *Config, tls handshake.MintTLS, paramsChan <-chan handshake.TransportParameters, initialPacketNumber protocol.PacketNumber, ) (packetHandler, error) { handshakeEvent := make(chan struct{}, 1) s := &session{ conn: conn, config: config, connectionID: connectionID, perspective: protocol.PerspectiveClient, version: v, handshakeEvent: handshakeEvent, paramsChan: paramsChan, } s.preSetup() tls.SetCryptoStream(s.cryptoStream) cs, err := handshake.NewCryptoSetupTLSClient( s.cryptoStream, s.connectionID, hostname, handshakeEvent, tls, v, ) if err != nil { return nil, err } s.cryptoSetup = cs return s, s.postSetup(initialPacketNumber) } func (s *session) preSetup() { s.rttStats = &congestion.RTTStats{} s.connFlowController = flowcontrol.NewConnectionFlowController( protocol.ReceiveConnectionFlowControlWindow, protocol.ByteCount(s.config.MaxReceiveConnectionFlowControlWindow), s.rttStats, ) s.cryptoStream = s.newCryptoStream() } func (s *session) postSetup(initialPacketNumber protocol.PacketNumber) error { s.handshakeChan = make(chan error, 1) s.receivedPackets = make(chan *receivedPacket, protocol.MaxSessionUnprocessedPackets) s.closeChan = make(chan closeError, 1) s.sendingScheduled = make(chan struct{}, 1) s.undecryptablePackets = make([]*receivedPacket, 0, protocol.MaxUndecryptablePackets) s.ctx, s.ctxCancel = context.WithCancel(context.Background()) s.timer = utils.NewTimer() now := time.Now() s.lastNetworkActivityTime = now s.sessionCreationTime = now s.sentPacketHandler = ackhandler.NewSentPacketHandler(s.rttStats) s.receivedPacketHandler = ackhandler.NewReceivedPacketHandler(s.rttStats, s.version) if s.version.UsesTLS() { s.streamsMap = newStreamsMap(s, s.newFlowController, s.config.MaxIncomingStreams, s.config.MaxIncomingUniStreams, s.perspective, s.version) } else { s.streamsMap = newStreamsMapLegacy(s.newStream, s.config.MaxIncomingStreams, s.perspective) } s.streamFramer = newStreamFramer(s.cryptoStream, s.streamsMap, s.version) s.packer = newPacketPacker(s.connectionID, initialPacketNumber, s.sentPacketHandler.GetPacketNumberLen, s.RemoteAddr(), s.cryptoSetup, s.streamFramer, s.perspective, s.version, ) s.windowUpdateQueue = newWindowUpdateQueue(s.streamsMap, s.cryptoStream, s.packer.QueueControlFrame) s.unpacker = &packetUnpacker{aead: s.cryptoSetup, version: s.version} return nil } // run the session main loop func (s *session) run() error { defer s.ctxCancel() go func() { if err := s.cryptoSetup.HandleCryptoStream(); err != nil { s.Close(err) } }() var closeErr closeError handshakeEvent := s.handshakeEvent runLoop: for { // Close immediately if requested select { case closeErr = <-s.closeChan: break runLoop default: } s.maybeResetTimer() select { case closeErr = <-s.closeChan: break runLoop case <-s.timer.Chan(): s.timer.SetRead() // We do all the interesting stuff after the switch statement, so // nothing to see here. case <-s.sendingScheduled: // We do all the interesting stuff after the switch statement, so // nothing to see here. case p := <-s.receivedPackets: err := s.handlePacketImpl(p) if err != nil { if qErr, ok := err.(*qerr.QuicError); ok && qErr.ErrorCode == qerr.DecryptionFailure { s.tryQueueingUndecryptablePacket(p) continue } s.closeLocal(err) continue } // This is a bit unclean, but works properly, since the packet always // begins with the public header and we never copy it. putPacketBuffer(&p.header.Raw) case p := <-s.paramsChan: s.processTransportParameters(&p) case _, ok := <-handshakeEvent: if !ok { // the aeadChanged chan was closed. This means that the handshake is completed. s.handshakeComplete = true handshakeEvent = nil // prevent this case from ever being selected again if !s.version.UsesTLS() && s.perspective == protocol.PerspectiveClient { // In gQUIC, there's no equivalent to the Finished message in TLS // The server knows that the handshake is complete when it receives the first forward-secure packet sent by the client. // We need to make sure that the client actually sends such a packet. s.packer.QueueControlFrame(&wire.PingFrame{}) } close(s.handshakeChan) } else { s.tryDecryptingQueuedPackets() } } now := time.Now() if timeout := s.sentPacketHandler.GetAlarmTimeout(); !timeout.IsZero() && timeout.Before(now) { // This could cause packets to be retransmitted. // Check it before trying to send packets. if err := s.sentPacketHandler.OnAlarm(); err != nil { s.closeLocal(err) } } var pacingDeadline time.Time if s.pacingDeadline.IsZero() { // the timer didn't have a pacing deadline set pacingDeadline = s.sentPacketHandler.TimeUntilSend() } if s.config.KeepAlive && !s.keepAlivePingSent && s.handshakeComplete && time.Since(s.lastNetworkActivityTime) >= s.peerParams.IdleTimeout/2 { // send the PING frame since there is no activity in the session s.packer.QueueControlFrame(&wire.PingFrame{}) s.keepAlivePingSent = true } else if !pacingDeadline.IsZero() && now.Before(pacingDeadline) { // If we get to this point before the pacing deadline, we should wait until that deadline. // This can happen when scheduleSending is called, or a packet is received. // Set the timer and restart the run loop. s.pacingDeadline = pacingDeadline continue } if err := s.sendPackets(); err != nil { s.closeLocal(err) } if !s.receivedTooManyUndecrytablePacketsTime.IsZero() && s.receivedTooManyUndecrytablePacketsTime.Add(protocol.PublicResetTimeout).Before(now) && len(s.undecryptablePackets) != 0 { s.closeLocal(qerr.Error(qerr.DecryptionFailure, "too many undecryptable packets received")) } if !s.handshakeComplete && now.Sub(s.sessionCreationTime) >= s.config.HandshakeTimeout { s.closeLocal(qerr.Error(qerr.HandshakeTimeout, "Crypto handshake did not complete in time.")) } if s.handshakeComplete && now.Sub(s.lastNetworkActivityTime) >= s.config.IdleTimeout { s.closeLocal(qerr.Error(qerr.NetworkIdleTimeout, "No recent network activity.")) } } // only send the error the handshakeChan when the handshake is not completed yet // otherwise this chan will already be closed if !s.handshakeComplete { s.handshakeChan <- closeErr.err } s.handleCloseError(closeErr) return closeErr.err } func (s *session) Context() context.Context { return s.ctx } func (s *session) ConnectionState() ConnectionState { return s.cryptoSetup.ConnectionState() } func (s *session) maybeResetTimer() { var deadline time.Time if s.config.KeepAlive && s.handshakeComplete && !s.keepAlivePingSent { deadline = s.lastNetworkActivityTime.Add(s.peerParams.IdleTimeout / 2) } else { deadline = s.lastNetworkActivityTime.Add(s.config.IdleTimeout) } if ackAlarm := s.receivedPacketHandler.GetAlarmTimeout(); !ackAlarm.IsZero() { deadline = utils.MinTime(deadline, ackAlarm) } if lossTime := s.sentPacketHandler.GetAlarmTimeout(); !lossTime.IsZero() { deadline = utils.MinTime(deadline, lossTime) } if !s.handshakeComplete { handshakeDeadline := s.sessionCreationTime.Add(s.config.HandshakeTimeout) deadline = utils.MinTime(deadline, handshakeDeadline) } if !s.receivedTooManyUndecrytablePacketsTime.IsZero() { deadline = utils.MinTime(deadline, s.receivedTooManyUndecrytablePacketsTime.Add(protocol.PublicResetTimeout)) } if !s.pacingDeadline.IsZero() { deadline = utils.MinTime(deadline, s.pacingDeadline) } s.timer.Reset(deadline) } func (s *session) handlePacketImpl(p *receivedPacket) error { if s.perspective == protocol.PerspectiveClient { diversificationNonce := p.header.DiversificationNonce if len(diversificationNonce) > 0 { s.cryptoSetup.SetDiversificationNonce(diversificationNonce) } } if p.rcvTime.IsZero() { // To simplify testing p.rcvTime = time.Now() } s.receivedFirstPacket = true s.lastNetworkActivityTime = p.rcvTime s.keepAlivePingSent = false hdr := p.header data := p.data // Calculate packet number hdr.PacketNumber = protocol.InferPacketNumber( hdr.PacketNumberLen, s.largestRcvdPacketNumber, hdr.PacketNumber, ) packet, err := s.unpacker.Unpack(hdr.Raw, hdr, data) if utils.Debug() { if err != nil { utils.Debugf("<- Reading packet 0x%x (%d bytes) for connection %x", hdr.PacketNumber, len(data)+len(hdr.Raw), hdr.ConnectionID) } else { utils.Debugf("<- Reading packet 0x%x (%d bytes) for connection %x, %s", hdr.PacketNumber, len(data)+len(hdr.Raw), hdr.ConnectionID, packet.encryptionLevel) } hdr.Log() } // if the decryption failed, this might be a packet sent by an attacker if err != nil { return err } // In TLS 1.3, the client considers the handshake complete as soon as // it received the server's Finished message and sent its Finished. // We have to wait for the first forward-secure packet from the server before // deleting all handshake packets from the history. if !s.receivedFirstForwardSecurePacket && packet.encryptionLevel == protocol.EncryptionForwardSecure { s.receivedFirstForwardSecurePacket = true s.sentPacketHandler.SetHandshakeComplete() } s.lastRcvdPacketNumber = hdr.PacketNumber // Only do this after decrypting, so we are sure the packet is not attacker-controlled s.largestRcvdPacketNumber = utils.MaxPacketNumber(s.largestRcvdPacketNumber, hdr.PacketNumber) // If this is a Retry packet, there's no need to send an ACK. // The session will be closed and recreated as soon as the crypto setup processed the HRR. if hdr.Type != protocol.PacketTypeRetry { isRetransmittable := ackhandler.HasRetransmittableFrames(packet.frames) if err := s.receivedPacketHandler.ReceivedPacket(hdr.PacketNumber, p.rcvTime, isRetransmittable); err != nil { return err } } return s.handleFrames(packet.frames, packet.encryptionLevel) } func (s *session) handleFrames(fs []wire.Frame, encLevel protocol.EncryptionLevel) error { for _, ff := range fs { var err error wire.LogFrame(ff, false) switch frame := ff.(type) { case *wire.StreamFrame: err = s.handleStreamFrame(frame) case *wire.AckFrame: err = s.handleAckFrame(frame, encLevel) case *wire.ConnectionCloseFrame: s.closeRemote(qerr.Error(frame.ErrorCode, frame.ReasonPhrase)) case *wire.GoawayFrame: err = errors.New("unimplemented: handling GOAWAY frames") case *wire.StopWaitingFrame: // ignore STOP_WAITINGs case *wire.RstStreamFrame: err = s.handleRstStreamFrame(frame) case *wire.MaxDataFrame: s.handleMaxDataFrame(frame) case *wire.MaxStreamDataFrame: err = s.handleMaxStreamDataFrame(frame) case *wire.MaxStreamIDFrame: err = s.handleMaxStreamIDFrame(frame) case *wire.BlockedFrame: case *wire.StreamBlockedFrame: case *wire.StreamIDBlockedFrame: case *wire.StopSendingFrame: err = s.handleStopSendingFrame(frame) case *wire.PingFrame: default: return errors.New("Session BUG: unexpected frame type") } if err != nil { return err } } return nil } // handlePacket is called by the server with a new packet func (s *session) handlePacket(p *receivedPacket) { // Discard packets once the amount of queued packets is larger than // the channel size, protocol.MaxSessionUnprocessedPackets select { case s.receivedPackets <- p: default: } } func (s *session) handleStreamFrame(frame *wire.StreamFrame) error { if frame.StreamID == s.version.CryptoStreamID() { if frame.FinBit { return errors.New("Received STREAM frame with FIN bit for the crypto stream") } return s.cryptoStream.handleStreamFrame(frame) } str, err := s.streamsMap.GetOrOpenReceiveStream(frame.StreamID) if err != nil { return err } if str == nil { // Stream is closed and already garbage collected // ignore this StreamFrame return nil } return str.handleStreamFrame(frame) } func (s *session) handleMaxDataFrame(frame *wire.MaxDataFrame) { s.connFlowController.UpdateSendWindow(frame.ByteOffset) } func (s *session) handleMaxStreamDataFrame(frame *wire.MaxStreamDataFrame) error { if frame.StreamID == s.version.CryptoStreamID() { s.cryptoStream.handleMaxStreamDataFrame(frame) return nil } str, err := s.streamsMap.GetOrOpenSendStream(frame.StreamID) if err != nil { return err } if str == nil { // stream is closed and already garbage collected return nil } str.handleMaxStreamDataFrame(frame) return nil } func (s *session) handleMaxStreamIDFrame(frame *wire.MaxStreamIDFrame) error { return s.streamsMap.HandleMaxStreamIDFrame(frame) } func (s *session) handleRstStreamFrame(frame *wire.RstStreamFrame) error { if frame.StreamID == s.version.CryptoStreamID() { return errors.New("Received RST_STREAM frame for the crypto stream") } str, err := s.streamsMap.GetOrOpenReceiveStream(frame.StreamID) if err != nil { return err } if str == nil { // stream is closed and already garbage collected return nil } return str.handleRstStreamFrame(frame) } func (s *session) handleStopSendingFrame(frame *wire.StopSendingFrame) error { if frame.StreamID == s.version.CryptoStreamID() { return errors.New("Received a STOP_SENDING frame for the crypto stream") } str, err := s.streamsMap.GetOrOpenSendStream(frame.StreamID) if err != nil { return err } if str == nil { // stream is closed and already garbage collected return nil } str.handleStopSendingFrame(frame) return nil } func (s *session) handleAckFrame(frame *wire.AckFrame, encLevel protocol.EncryptionLevel) error { if err := s.sentPacketHandler.ReceivedAck(frame, s.lastRcvdPacketNumber, encLevel, s.lastNetworkActivityTime); err != nil { return err } s.receivedPacketHandler.IgnoreBelow(s.sentPacketHandler.GetLowestPacketNotConfirmedAcked()) return nil } func (s *session) closeLocal(e error) { s.closeOnce.Do(func() { s.closeChan <- closeError{err: e, remote: false} }) } func (s *session) closeRemote(e error) { s.closeOnce.Do(func() { s.closeChan <- closeError{err: e, remote: true} }) } // Close the connection. If err is nil it will be set to qerr.PeerGoingAway. // It waits until the run loop has stopped before returning func (s *session) Close(e error) error { s.closeLocal(e) <-s.ctx.Done() return nil } func (s *session) handleCloseError(closeErr closeError) error { if closeErr.err == nil { closeErr.err = qerr.PeerGoingAway } var quicErr *qerr.QuicError var ok bool if quicErr, ok = closeErr.err.(*qerr.QuicError); !ok { quicErr = qerr.ToQuicError(closeErr.err) } // Don't log 'normal' reasons if quicErr.ErrorCode == qerr.PeerGoingAway || quicErr.ErrorCode == qerr.NetworkIdleTimeout { utils.Infof("Closing connection %x", s.connectionID) } else { utils.Errorf("Closing session with error: %s", closeErr.err.Error()) } s.cryptoStream.closeForShutdown(quicErr) s.streamsMap.CloseWithError(quicErr) if closeErr.err == errCloseSessionForNewVersion || closeErr.err == handshake.ErrCloseSessionForRetry { return nil } // If this is a remote close we're done here if closeErr.remote { return nil } if quicErr.ErrorCode == qerr.DecryptionFailure || quicErr == handshake.ErrHOLExperiment || quicErr == handshake.ErrNSTPExperiment { return s.sendPublicReset(s.lastRcvdPacketNumber) } return s.sendConnectionClose(quicErr) } func (s *session) processTransportParameters(params *handshake.TransportParameters) { s.peerParams = params s.streamsMap.UpdateLimits(params) if params.OmitConnectionID { s.packer.SetOmitConnectionID() } if params.MaxPacketSize != 0 { s.packer.SetMaxPacketSize(params.MaxPacketSize) } s.connFlowController.UpdateSendWindow(params.ConnectionFlowControlWindow) // the crypto stream is the only open stream at this moment // so we don't need to update stream flow control windows } func (s *session) sendPackets() error { s.pacingDeadline = time.Time{} sendMode := s.sentPacketHandler.SendMode() if sendMode == ackhandler.SendNone { // shortcut: return immediately if there's nothing to send return nil } numPackets := s.sentPacketHandler.ShouldSendNumPackets() var numPacketsSent int sendLoop: for { switch sendMode { case ackhandler.SendNone: break sendLoop case ackhandler.SendAck: // We can at most send a single ACK only packet. // There will only be a new ACK after receiving new packets. // SendAck is only returned when we're congestion limited, so we don't need to set the pacingt timer. return s.maybeSendAckOnlyPacket() case ackhandler.SendRetransmission: sentPacket, err := s.maybeSendRetransmission() if err != nil { return err } if sentPacket { numPacketsSent++ // This can happen if a retransmission queued, but it wasn't necessary to send it. // e.g. when an Initial is queued, but we already received a packet from the server. } case ackhandler.SendAny: sentPacket, err := s.sendPacket() if err != nil { return err } if !sentPacket { break sendLoop } numPacketsSent++ default: return fmt.Errorf("BUG: invalid send mode %d", sendMode) } if numPacketsSent >= numPackets { break } sendMode = s.sentPacketHandler.SendMode() } // Only start the pacing timer if we sent as many packets as we were allowed. // There will probably be more to send when calling sendPacket again. if numPacketsSent == numPackets { s.pacingDeadline = s.sentPacketHandler.TimeUntilSend() } return nil } func (s *session) maybeSendAckOnlyPacket() error { ack := s.receivedPacketHandler.GetAckFrame() if ack == nil { return nil } s.packer.QueueControlFrame(ack) if s.version.UsesStopWaitingFrames() { // for gQUIC, maybe add a STOP_WAITING if swf := s.sentPacketHandler.GetStopWaitingFrame(false); swf != nil { s.packer.QueueControlFrame(swf) } } packet, err := s.packer.PackAckPacket() if err != nil { return err } s.sentPacketHandler.SentPacket(packet.ToAckHandlerPacket()) return s.sendPackedPacket(packet) } // maybeSendRetransmission sends retransmissions for at most one packet. // It takes care that Initials aren't retransmitted, if a packet from the server was already received. func (s *session) maybeSendRetransmission() (bool, error) { var retransmitPacket *ackhandler.Packet for { retransmitPacket = s.sentPacketHandler.DequeuePacketForRetransmission() if retransmitPacket == nil { return false, nil } // Don't retransmit Initial packets if we already received a response. // An Initial might have been retransmitted multiple times before we receive a response. // As soon as we receive one response, we don't need to send any more Initials. if s.receivedFirstPacket && retransmitPacket.PacketType == protocol.PacketTypeInitial { utils.Debugf("Skipping retransmission of packet %d. Already received a response to an Initial.", retransmitPacket.PacketNumber) continue } break } if retransmitPacket.EncryptionLevel != protocol.EncryptionForwardSecure { utils.Debugf("\tDequeueing handshake retransmission for packet 0x%x", retransmitPacket.PacketNumber) } else { utils.Debugf("\tDequeueing retransmission for packet 0x%x", retransmitPacket.PacketNumber) } if s.version.UsesStopWaitingFrames() { s.packer.QueueControlFrame(s.sentPacketHandler.GetStopWaitingFrame(true)) } packets, err := s.packer.PackRetransmission(retransmitPacket) if err != nil { return false, err } ackhandlerPackets := make([]*ackhandler.Packet, len(packets)) for i, packet := range packets { ackhandlerPackets[i] = packet.ToAckHandlerPacket() } s.sentPacketHandler.SentPacketsAsRetransmission(ackhandlerPackets, retransmitPacket.PacketNumber) for _, packet := range packets { if err := s.sendPackedPacket(packet); err != nil { return false, err } } return true, nil } func (s *session) sendPacket() (bool, error) { if offset := s.connFlowController.GetWindowUpdate(); offset != 0 { s.packer.QueueControlFrame(&wire.MaxDataFrame{ByteOffset: offset}) } if isBlocked, offset := s.connFlowController.IsNewlyBlocked(); isBlocked { s.packer.QueueControlFrame(&wire.BlockedFrame{Offset: offset}) } s.windowUpdateQueue.QueueAll() if ack := s.receivedPacketHandler.GetAckFrame(); ack != nil { s.packer.QueueControlFrame(ack) if s.version.UsesStopWaitingFrames() { if swf := s.sentPacketHandler.GetStopWaitingFrame(false); swf != nil { s.packer.QueueControlFrame(swf) } } } packet, err := s.packer.PackPacket() if err != nil || packet == nil { return false, err } s.sentPacketHandler.SentPacket(packet.ToAckHandlerPacket()) if err := s.sendPackedPacket(packet); err != nil { return false, err } return true, nil } func (s *session) sendPackedPacket(packet *packedPacket) error { defer putPacketBuffer(&packet.raw) s.logPacket(packet) return s.conn.Write(packet.raw) } func (s *session) sendConnectionClose(quicErr *qerr.QuicError) error { packet, err := s.packer.PackConnectionClose(&wire.ConnectionCloseFrame{ ErrorCode: quicErr.ErrorCode, ReasonPhrase: quicErr.ErrorMessage, }) if err != nil { return err } s.logPacket(packet) return s.conn.Write(packet.raw) } func (s *session) logPacket(packet *packedPacket) { if !utils.Debug() { // We don't need to allocate the slices for calling the format functions return } utils.Debugf("-> Sending packet 0x%x (%d bytes) for connection %x, %s", packet.header.PacketNumber, len(packet.raw), s.connectionID, packet.encryptionLevel) packet.header.Log() for _, frame := range packet.frames { wire.LogFrame(frame, true) } } // GetOrOpenStream either returns an existing stream, a newly opened stream, or nil if a stream with the provided ID is already closed. // It is *only* needed for gQUIC's H2. // It will be removed as soon as gQUIC moves towards the IETF H2/QUIC stream mapping. func (s *session) GetOrOpenStream(id protocol.StreamID) (Stream, error) { str, err := s.streamsMap.GetOrOpenSendStream(id) if str != nil { if bstr, ok := str.(Stream); ok { return bstr, err } return nil, fmt.Errorf("Stream %d is not a bidirectional stream", id) } // make sure to return an actual nil value here, not an Stream with value nil return nil, err } // AcceptStream returns the next stream openend by the peer func (s *session) AcceptStream() (Stream, error) { return s.streamsMap.AcceptStream() } func (s *session) AcceptUniStream() (ReceiveStream, error) { return s.streamsMap.AcceptUniStream() } // OpenStream opens a stream func (s *session) OpenStream() (Stream, error) { return s.streamsMap.OpenStream() } func (s *session) OpenStreamSync() (Stream, error) { return s.streamsMap.OpenStreamSync() } func (s *session) OpenUniStream() (SendStream, error) { return s.streamsMap.OpenUniStream() } func (s *session) OpenUniStreamSync() (SendStream, error) { return s.streamsMap.OpenUniStreamSync() } func (s *session) newStream(id protocol.StreamID) streamI { flowController := s.newFlowController(id) return newStream(id, s, flowController, s.version) } func (s *session) newFlowController(id protocol.StreamID) flowcontrol.StreamFlowController { var initialSendWindow protocol.ByteCount if s.peerParams != nil { initialSendWindow = s.peerParams.StreamFlowControlWindow } return flowcontrol.NewStreamFlowController( id, s.version.StreamContributesToConnectionFlowControl(id), s.connFlowController, protocol.ReceiveStreamFlowControlWindow, protocol.ByteCount(s.config.MaxReceiveStreamFlowControlWindow), initialSendWindow, s.rttStats, ) } func (s *session) newCryptoStream() cryptoStreamI { id := s.version.CryptoStreamID() flowController := flowcontrol.NewStreamFlowController( id, s.version.StreamContributesToConnectionFlowControl(id), s.connFlowController, protocol.ReceiveStreamFlowControlWindow, protocol.ByteCount(s.config.MaxReceiveStreamFlowControlWindow), 0, s.rttStats, ) return newCryptoStream(s, flowController, s.version) } func (s *session) sendPublicReset(rejectedPacketNumber protocol.PacketNumber) error { utils.Infof("Sending public reset for connection %x, packet number %d", s.connectionID, rejectedPacketNumber) return s.conn.Write(wire.WritePublicReset(s.connectionID, rejectedPacketNumber, 0)) } // scheduleSending signals that we have data for sending func (s *session) scheduleSending() { select { case s.sendingScheduled <- struct{}{}: default: } } func (s *session) tryQueueingUndecryptablePacket(p *receivedPacket) { if s.handshakeComplete { utils.Debugf("Received undecryptable packet from %s after the handshake: %#v, %d bytes data", p.remoteAddr.String(), p.header, len(p.data)) return } if len(s.undecryptablePackets)+1 > protocol.MaxUndecryptablePackets { // if this is the first time the undecryptablePackets runs full, start the timer to send a Public Reset if s.receivedTooManyUndecrytablePacketsTime.IsZero() { s.receivedTooManyUndecrytablePacketsTime = time.Now() s.maybeResetTimer() } utils.Infof("Dropping undecrytable packet 0x%x (undecryptable packet queue full)", p.header.PacketNumber) return } utils.Infof("Queueing packet 0x%x for later decryption", p.header.PacketNumber) s.undecryptablePackets = append(s.undecryptablePackets, p) } func (s *session) tryDecryptingQueuedPackets() { for _, p := range s.undecryptablePackets { s.handlePacket(p) } s.undecryptablePackets = s.undecryptablePackets[:0] } func (s *session) queueControlFrame(f wire.Frame) { s.packer.QueueControlFrame(f) s.scheduleSending() } func (s *session) onHasWindowUpdate(id protocol.StreamID) { s.windowUpdateQueue.Add(id) s.scheduleSending() } func (s *session) onHasStreamData(id protocol.StreamID) { s.streamFramer.AddActiveStream(id) s.scheduleSending() } func (s *session) onStreamCompleted(id protocol.StreamID) { if err := s.streamsMap.DeleteStream(id); err != nil { s.Close(err) } } func (s *session) LocalAddr() net.Addr { return s.conn.LocalAddr() } func (s *session) RemoteAddr() net.Addr { return s.conn.RemoteAddr() } func (s *session) handshakeStatus() <-chan error { return s.handshakeChan } func (s *session) getCryptoStream() cryptoStreamI { return s.cryptoStream } func (s *session) GetVersion() protocol.VersionNumber { return s.version }