This is a breaking change primarily in two areas:
- Storage paths for certificates have changed
- Slight changes to JSON config parameters
Huge improvements in this commit, to be detailed more in
the release notes.
The upcoming PKI app will be powered by Smallstep libraries.
This makes it more convenient to configure quick proxies that use HTTPS
but also introduces a lot of logical complexity. We have to do a lot of
verification for consistency and errors.
Path and query string is not supported (i.e. no rewriting).
Scheme and port can be inferred from each other if HTTP(S)/80/443.
If omitted, defaults to HTTP.
Any explicit transport config must be consistent with the upstream
schemes, and the upstream schemes must all match too.
But, this change allows a config that used to require this:
reverse_proxy example.com:443 {
transport http {
tls
}
}
to be reduced to this:
reverse_proxy https://example.com
which is really nice syntactic sugar (and is reminiscent of Caddy 1).
* caddytls: Add CipherSuiteName and ProtocolName functions
The cipher_suites.go file is derived from a commit to the Go master
branch that's slated for Go 1.14. Once Go 1.14 is released, this file
can be removed.
* caddyhttp: Use commonLogEmptyValue in common_log replacer
* caddyhttp: Add TLS placeholders
* caddytls: update unsupportedProtocols
Don't export unsupportedProtocols and update its godoc to mention that
it's used for logging only.
* caddyhttp: simplify getRegTLSReplacement signature
getRegTLSReplacement should receive a string instead of a pointer.
* caddyhttp: Remove http.request.tls.client.cert replacer
The previous behavior of printing the raw certificate bytes was ported
from Caddy 1, but the usefulness of that approach is suspect. Remove
the client cert replacer from v2 until a use case is presented.
* caddyhttp: Use tls.CipherSuiteName from Go 1.14
Remove ported version of CipherSuiteName in the process.
* Add handler for unhandled errors in errorChain
Currently, when an error chain is defined, the default error handler is
bypassed entirely - even if the error chain doesn't handle every error.
This results in pages returning a blank 200 OK page.
For instance, it's possible for an error chain to match on the error
status code and only handle a certain subtype of errors (like 403s). In
this case, we'd want any other errors to still go through the default
handler and return an empty page with the status code.
This PR changes the "suffix handler" passed to errorChain.Compile to
set the status code of the response to the error status code.
Fixes#3053
* Move the errorHandlerChain middleware to variable
* Style fix
* Fix crash when specifying "*" to header directive.
Fixes#3060
* Look Host header in header and header_regexp.
Also, if more than one header is provided, header_regexp now looks for
extra headers values to reflect the behavior from header.
Fixes#3059
* Fix parsing of named header_regexp in Caddyfile.
See #3059
The documentation specifies that the hash algorithm defaults to bcrypt.
However, the implementation returns an error in provision if no hash is
provided.
Fix this inconsistency by *actually* defaulting to bcrypt.
This is temporary as we prepare for a stable v2 release. We don't want
to make promises we don't know we can keep, and the Starlark integration
deserves much more focused attention which resources and funding do not
currently permit. When the project is financially stable, I will be able
to revisit this properly and add flexible, robust Starlark scripting
support to Caddy 2.
This is necessary to avoid a race for sockets. Both the HTTP servers and
CertMagic solvers will try to bind the HTTP/HTTPS ports, but we need to
make sure that our HTTP servers bind first. This is kind of a new thing
now that management is async in Caddy 2.
Also update to CertMagic 0.9.2, which fixes some async use cases at
scale.
See https://caddy.community/t/caddy-server-that-returns-only-ip-address-as-text/6928/6?u=matt
In most cases, we will want to apply header operations immediately,
rather than waiting until the response is written. The exceptions are
generally going to be if we are deleting a header field or if a field is
to be overwritten. We now automatically defer header ops if deleting a
header field, and allow the user to manually enable deferred mode with
the defer subdirective.
Paths always begin with a slash, and omitting the leading slash could be
convenient to avoid confusion with a path matcher in the Caddyfile. I do
not think there would be any harm to implicitly add the leading slash.
* v2: add documentation for circuit breaker config and "random selection" load balancing policy
* v2: rename circuit breaker config inline key from `type` to `breaker` to avoid json key clash between the `circuit_breaker` type and the `type` field of the generic circuit breaker Config struct used by circuit breaking implementations
* v2: restore the circuit breaker inline key to `type` and rename the name circuit breaker config field from `Type` to `Factor`
The fix that was initially put forth in #2971 was good, but only for
up to one layer of nesting. The real problem was that we forgot to
increment nesting when already inside a block if we saw another open
curly brace that opens another block (dispenser.go L157-158).
The new 'handle' directive allows HTTP Caddyfiles to be designed more
like nginx location blocks if the user prefers. Inside a handle block,
directives are still ordered just like they are outside of them, but
handler blocks at a given level of nesting are mutually exclusive.
This work benefitted from some refactoring and cleanup.
Before, modifying the path might have affected how a new query string
was built if the query string relied on the path. Now, we build each
component in isolation and only change the URI on the request later.
Also, prevent trailing & in query string.
This splits automatic HTTPS into two phases. The first provisions the
route matchers and uses them to build the domain set and configure
auto HTTP->HTTPS redirects. This happens before the rest of the
provisioning does.
The second phase takes place at the beginning of the app start. It
attaches pointers to the tls app to each server, and begins certificate
management for the domains that were found in the first phase.
Our new parser also preserves original parameter order, rather than
re-encoding using the std lib (which sorts).
The renamed parameters are a breaking change but they're new enough
that I don't think anyone is using them.