0
Fork 0
mirror of https://github.com/caddyserver/caddy.git synced 2024-12-23 22:27:38 -05:00
caddy/caddyhttp/httpserver/mitm.go

780 lines
25 KiB
Go
Raw Normal View History

// Copyright 2015 Light Code Labs, LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package httpserver
import (
"bytes"
"context"
"crypto/tls"
"io"
"net"
"net/http"
2017-06-07 15:22:55 -05:00
"strconv"
"strings"
"sync"
"github.com/mholt/caddy/caddytls"
2018-03-22 19:05:31 -05:00
"github.com/mholt/caddy/telemetry"
)
// tlsHandler is a http.Handler that will inject a value
// into the request context indicating if the TLS
// connection is likely being intercepted.
type tlsHandler struct {
next http.Handler
listener *tlsHelloListener
closeOnMITM bool // whether to close connection on MITM; TODO: expose through new directive
}
// ServeHTTP checks the User-Agent. For the four main browsers (Chrome,
// Edge, Firefox, and Safari) indicated by the User-Agent, the properties
// of the TLS Client Hello will be compared. The context value "mitm" will
// be set to a value indicating if it is likely that the underlying TLS
// connection is being intercepted.
//
// Note that due to Microsoft's decision to intentionally make IE/Edge
// user agents obscure (and look like other browsers), this may offer
// less accuracy for IE/Edge clients.
//
// This MITM detection capability is based on research done by Durumeric,
// Halderman, et. al. in "The Security Impact of HTTPS Interception" (NDSS '17):
// https://jhalderm.com/pub/papers/interception-ndss17.pdf
func (h *tlsHandler) ServeHTTP(w http.ResponseWriter, r *http.Request) {
2018-03-21 18:01:14 -05:00
// TODO: one request per connection, we should report UA in connection with
// handshake (reported in caddytls package) and our MITM assessment
if h.listener == nil {
h.next.ServeHTTP(w, r)
return
}
h.listener.helloInfosMu.RLock()
info := h.listener.helloInfos[r.RemoteAddr]
h.listener.helloInfosMu.RUnlock()
ua := r.Header.Get("User-Agent")
uaHash := telemetry.FastHash([]byte(ua))
// report this request's UA in connection with this ClientHello
go telemetry.AppendUnique("tls_client_hello_ua:"+caddytls.ClientHelloInfo(info).Key(), uaHash)
var checked, mitm bool
if r.Header.Get("X-BlueCoat-Via") != "" || // Blue Coat (masks User-Agent header to generic values)
r.Header.Get("X-FCCKV2") != "" || // Fortinet
info.advertisesHeartbeatSupport() { // no major browsers have ever implemented Heartbeat
checked = true
mitm = true
} else if strings.Contains(ua, "Edge") || strings.Contains(ua, "MSIE") ||
strings.Contains(ua, "Trident") {
checked = true
mitm = !info.looksLikeEdge()
} else if strings.Contains(ua, "Chrome") {
checked = true
mitm = !info.looksLikeChrome()
} else if strings.Contains(ua, "CriOS") {
// Chrome on iOS sometimes uses iOS-provided TLS stack (which looks exactly like Safari)
// but for connections that don't render a web page (favicon, etc.) it uses its own...
checked = true
mitm = !info.looksLikeChrome() && !info.looksLikeSafari()
} else if strings.Contains(ua, "Firefox") {
checked = true
if strings.Contains(ua, "Windows") {
ver := getVersion(ua, "Firefox")
if ver == 45.0 || ver == 52.0 {
mitm = !info.looksLikeTor()
} else {
mitm = !info.looksLikeFirefox()
}
} else {
mitm = !info.looksLikeFirefox()
}
} else if strings.Contains(ua, "Safari") {
checked = true
mitm = !info.looksLikeSafari()
}
if checked {
r = r.WithContext(context.WithValue(r.Context(), MitmCtxKey, mitm))
if mitm {
2018-03-22 19:05:31 -05:00
go telemetry.AppendUnique("http_mitm", "likely")
} else {
2018-03-22 19:05:31 -05:00
go telemetry.AppendUnique("http_mitm", "unlikely")
}
} else {
2018-03-22 19:05:31 -05:00
go telemetry.AppendUnique("http_mitm", "unknown")
}
if mitm && h.closeOnMITM {
// TODO: This termination might need to happen later in the middleware
// chain in order to be picked up by the log directive, in case the site
// owner still wants to log this event. It'll probably require a new
// directive. If this feature is useful, we can finish implementing this.
r.Close = true
return
}
h.next.ServeHTTP(w, r)
}
// getVersion returns a (possibly simplified) representation of the version string
// from a UserAgent string. It returns a float, so it can represent major and minor
// versions; the rest of the version is just tacked on behind the decimal point.
// The purpose of this is to stay simple while allowing for basic, fast comparisons.
// If the version for softwareName is not found in ua, -1 is returned.
func getVersion(ua, softwareName string) float64 {
search := softwareName + "/"
start := strings.Index(ua, search)
if start < 0 {
return -1
}
start += len(search)
end := strings.Index(ua[start:], " ")
if end < 0 {
end = len(ua)
} else {
end += start
}
strVer := strings.Replace(ua[start:end], "-", "", -1)
firstDot := strings.Index(strVer, ".")
if firstDot >= 0 {
strVer = strVer[:firstDot+1] + strings.Replace(strVer[firstDot+1:], ".", "", -1)
}
ver, err := strconv.ParseFloat(strVer, 64)
if err != nil {
return -1
}
return ver
}
// clientHelloConn reads the ClientHello
// and stores it in the attached listener.
type clientHelloConn struct {
net.Conn
listener *tlsHelloListener
readHello bool // whether ClientHello has been read
buf *bytes.Buffer
}
// Read reads from c.Conn (by letting the standard library
// do the reading off the wire), with the exception of
// getting a copy of the ClientHello so it can parse it.
func (c *clientHelloConn) Read(b []byte) (n int, err error) {
// if we've already read the ClientHello, pass thru
if c.readHello {
return c.Conn.Read(b)
}
// we let the standard lib read off the wire for us, and
// tee that into our buffer so we can read the ClientHello
tee := io.TeeReader(c.Conn, c.buf)
n, err = tee.Read(b)
if err != nil {
return
}
if c.buf.Len() < 5 {
return // need to read more bytes for header
}
// read the header bytes
hdr := make([]byte, 5)
_, err = io.ReadFull(c.buf, hdr)
if err != nil {
return // this would be highly unusual and sad
}
// get length of the ClientHello message and read it
length := int(uint16(hdr[3])<<8 | uint16(hdr[4]))
if c.buf.Len() < length {
return // need to read more bytes
}
hello := make([]byte, length)
_, err = io.ReadFull(c.buf, hello)
if err != nil {
return
}
bufpool.Put(c.buf) // buffer no longer needed
// parse the ClientHello and store it in the map
rawParsed := parseRawClientHello(hello)
c.listener.helloInfosMu.Lock()
c.listener.helloInfos[c.Conn.RemoteAddr().String()] = rawParsed
c.listener.helloInfosMu.Unlock()
// report this ClientHello to telemetry
2018-05-07 17:42:35 -05:00
chKey := caddytls.ClientHelloInfo(rawParsed).Key()
go telemetry.SetNested("tls_client_hello", chKey, rawParsed)
go telemetry.AppendUnique("tls_client_hello_count", chKey)
c.readHello = true
return
}
// parseRawClientHello parses data which contains the raw
// TLS Client Hello message. It extracts relevant information
// into info. Any error reading the Client Hello (such as
// insufficient length or invalid length values) results in
// a silent error and an incomplete info struct, since there
// is no good way to handle an error like this during Accept().
// The data is expected to contain the whole ClientHello and
// ONLY the ClientHello.
//
// The majority of this code is borrowed from the Go standard
// library, which is (c) The Go Authors. It has been modified
// to fit this use case.
func parseRawClientHello(data []byte) (info rawHelloInfo) {
if len(data) < 42 {
return
}
info.Version = uint16(data[4])<<8 | uint16(data[5])
2017-04-29 19:28:18 -05:00
sessionIDLen := int(data[38])
if sessionIDLen > 32 || len(data) < 39+sessionIDLen {
return
}
2017-04-29 19:28:18 -05:00
data = data[39+sessionIDLen:]
if len(data) < 2 {
return
}
// cipherSuiteLen is the number of bytes of cipher suite numbers. Since
// they are uint16s, the number must be even.
cipherSuiteLen := int(data[0])<<8 | int(data[1])
if cipherSuiteLen%2 == 1 || len(data) < 2+cipherSuiteLen {
return
}
numCipherSuites := cipherSuiteLen / 2
// read in the cipher suites
info.CipherSuites = make([]uint16, numCipherSuites)
for i := 0; i < numCipherSuites; i++ {
info.CipherSuites[i] = uint16(data[2+2*i])<<8 | uint16(data[3+2*i])
}
data = data[2+cipherSuiteLen:]
if len(data) < 1 {
return
}
// read in the compression methods
compressionMethodsLen := int(data[0])
if len(data) < 1+compressionMethodsLen {
return
}
info.CompressionMethods = data[1 : 1+compressionMethodsLen]
data = data[1+compressionMethodsLen:]
// ClientHello is optionally followed by extension data
if len(data) < 2 {
return
}
extensionsLength := int(data[0])<<8 | int(data[1])
data = data[2:]
if extensionsLength != len(data) {
return
}
// read in each extension, and extract any relevant information
// from extensions we care about
for len(data) != 0 {
if len(data) < 4 {
return
}
extension := uint16(data[0])<<8 | uint16(data[1])
length := int(data[2])<<8 | int(data[3])
data = data[4:]
if len(data) < length {
return
}
// record that the client advertised support for this extension
info.Extensions = append(info.Extensions, extension)
switch extension {
case extensionSupportedCurves:
// http://tools.ietf.org/html/rfc4492#section-5.5.1
if length < 2 {
return
}
l := int(data[0])<<8 | int(data[1])
if l%2 == 1 || length != l+2 {
return
}
numCurves := l / 2
info.Curves = make([]tls.CurveID, numCurves)
d := data[2:]
for i := 0; i < numCurves; i++ {
info.Curves[i] = tls.CurveID(d[0])<<8 | tls.CurveID(d[1])
d = d[2:]
}
case extensionSupportedPoints:
// http://tools.ietf.org/html/rfc4492#section-5.5.2
if length < 1 {
return
}
l := int(data[0])
if length != l+1 {
return
}
info.Points = make([]uint8, l)
copy(info.Points, data[1:])
}
data = data[length:]
}
return
}
// newTLSListener returns a new tlsHelloListener that wraps ln.
func newTLSListener(ln net.Listener, config *tls.Config) *tlsHelloListener {
return &tlsHelloListener{
Listener: ln,
config: config,
helloInfos: make(map[string]rawHelloInfo),
}
}
// tlsHelloListener is a TLS listener that is specially designed
// to read the ClientHello manually so we can extract necessary
// information from it. Each ClientHello message is mapped by
// the remote address of the client, which must be removed when
// the connection is closed (use ConnState).
type tlsHelloListener struct {
net.Listener
config *tls.Config
helloInfos map[string]rawHelloInfo
helloInfosMu sync.RWMutex
}
// Accept waits for and returns the next connection to the listener.
// After it accepts the underlying connection, it reads the
// ClientHello message and stores the parsed data into a map on l.
func (l *tlsHelloListener) Accept() (net.Conn, error) {
conn, err := l.Listener.Accept()
if err != nil {
return nil, err
}
buf := bufpool.Get().(*bytes.Buffer)
buf.Reset()
helloConn := &clientHelloConn{Conn: conn, listener: l, buf: buf}
return tls.Server(helloConn, l.config), nil
}
// rawHelloInfo contains the "raw" data parsed from the TLS
// Client Hello. No interpretation is done on the raw data.
//
// The methods on this type implement heuristics described
// by Durumeric, Halderman, et. al. in
// "The Security Impact of HTTPS Interception":
// https://jhalderm.com/pub/papers/interception-ndss17.pdf
2018-05-07 17:42:35 -05:00
type rawHelloInfo caddytls.ClientHelloInfo
// advertisesHeartbeatSupport returns true if info indicates
// that the client supports the Heartbeat extension.
func (info rawHelloInfo) advertisesHeartbeatSupport() bool {
for _, ext := range info.Extensions {
if ext == extensionHeartbeat {
return true
}
}
return false
}
// looksLikeFirefox returns true if info looks like a handshake
// from a modern version of Firefox.
func (info rawHelloInfo) looksLikeFirefox() bool {
// "To determine whether a Firefox session has been
// intercepted, we check for the presence and order
// of extensions, cipher suites, elliptic curves,
// EC point formats, and handshake compression methods." (early 2016)
// We check for the presence and order of the extensions.
// Note: Sometimes 0x15 (21, padding) is present, sometimes not.
// Note: Firefox 51+ does not advertise 0x3374 (13172, NPN).
// Note: Firefox doesn't advertise 0x0 (0, SNI) when connecting to IP addresses.
// Note: Firefox 55+ doesn't appear to advertise 0xFF03 (65283, short headers). It used to be between 5 and 13.
// Note: Firefox on Fedora (or RedHat) doesn't include ECC suites because of patent liability.
requiredExtensionsOrder := []uint16{23, 65281, 10, 11, 35, 16, 5, 13}
if !assertPresenceAndOrdering(requiredExtensionsOrder, info.Extensions, true) {
return false
}
// We check for both presence of curves and their ordering.
requiredCurves := []tls.CurveID{29, 23, 24, 25}
if len(info.Curves) < len(requiredCurves) {
return false
}
for i := range requiredCurves {
if info.Curves[i] != requiredCurves[i] {
return false
}
}
if len(info.Curves) > len(requiredCurves) {
// newer Firefox (55 Nightly?) may have additional curves at end of list
allowedCurves := []tls.CurveID{256, 257}
for i := range allowedCurves {
if info.Curves[len(requiredCurves)+i] != allowedCurves[i] {
return false
}
}
}
if hasGreaseCiphers(info.CipherSuites) {
return false
}
// We check for order of cipher suites but not presence, since
// according to the paper, cipher suites may be not be added
// or reordered by the user, but they may be disabled.
expectedCipherSuiteOrder := []uint16{
TLS_AES_128_GCM_SHA256, // 0x1301
TLS_CHACHA20_POLY1305_SHA256, // 0x1303
TLS_AES_256_GCM_SHA384, // 0x1302
tls.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, // 0xc02b
tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, // 0xc02f
tls.TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305, // 0xcca9
tls.TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305, // 0xcca8
tls.TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, // 0xc02c
tls.TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, // 0xc030
tls.TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, // 0xc00a
tls.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, // 0xc009
tls.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, // 0xc013
tls.TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, // 0xc014
TLS_DHE_RSA_WITH_AES_128_CBC_SHA, // 0x33
TLS_DHE_RSA_WITH_AES_256_CBC_SHA, // 0x39
tls.TLS_RSA_WITH_AES_128_CBC_SHA, // 0x2f
tls.TLS_RSA_WITH_AES_256_CBC_SHA, // 0x35
tls.TLS_RSA_WITH_3DES_EDE_CBC_SHA, // 0xa
}
return assertPresenceAndOrdering(expectedCipherSuiteOrder, info.CipherSuites, false)
}
// looksLikeChrome returns true if info looks like a handshake
// from a modern version of Chrome.
func (info rawHelloInfo) looksLikeChrome() bool {
// "We check for ciphers and extensions that Chrome is known
// to not support, but do not check for the inclusion of
// specific ciphers or extensions, nor do we validate their
// order. When appropriate, we check the presence and order
// of elliptic curves, compression methods, and EC point formats." (early 2016)
// Not in Chrome 56, but present in Safari 10 (Feb. 2017):
// TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 (0xc024)
// TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 (0xc023)
// TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA (0xc00a)
// TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA (0xc009)
// TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (0xc028)
// TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 (0xc027)
// TLS_RSA_WITH_AES_256_CBC_SHA256 (0x3d)
// TLS_RSA_WITH_AES_128_CBC_SHA256 (0x3c)
// Not in Chrome 56, but present in Firefox 51 (Feb. 2017):
// TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA (0xc00a)
// TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA (0xc009)
// TLS_DHE_RSA_WITH_AES_128_CBC_SHA (0x33)
// TLS_DHE_RSA_WITH_AES_256_CBC_SHA (0x39)
// Selected ciphers present in Chrome mobile (Feb. 2017):
// 0xc00a, 0xc014, 0xc009, 0x9c, 0x9d, 0x2f, 0x35, 0xa
chromeCipherExclusions := map[uint16]struct{}{
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384: {}, // 0xc024
tls.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256: {}, // 0xc023
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384: {}, // 0xc028
tls.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256: {}, // 0xc027
TLS_RSA_WITH_AES_256_CBC_SHA256: {}, // 0x3d
tls.TLS_RSA_WITH_AES_128_CBC_SHA256: {}, // 0x3c
TLS_DHE_RSA_WITH_AES_128_CBC_SHA: {}, // 0x33
TLS_DHE_RSA_WITH_AES_256_CBC_SHA: {}, // 0x39
}
for _, ext := range info.CipherSuites {
if _, ok := chromeCipherExclusions[ext]; ok {
return false
}
}
// Chrome does not include curve 25 (CurveP521) (as of Chrome 56, Feb. 2017).
for _, curve := range info.Curves {
if curve == 25 {
return false
}
}
if !hasGreaseCiphers(info.CipherSuites) {
return false
}
return true
}
// looksLikeEdge returns true if info looks like a handshake
// from a modern version of MS Edge.
func (info rawHelloInfo) looksLikeEdge() bool {
// "SChannel connections can by uniquely identified because SChannel
// is the only TLS library we tested that includes the OCSP status
// request extension before the supported groups and EC point formats
// extensions." (early 2016)
//
// More specifically, the OCSP status request extension appears
// *directly* before the other two extensions, which occur in that
// order. (I contacted the authors for clarification and verified it.)
for i, ext := range info.Extensions {
if ext == extensionOCSPStatusRequest {
if len(info.Extensions) <= i+2 {
return false
}
if info.Extensions[i+1] != extensionSupportedCurves ||
info.Extensions[i+2] != extensionSupportedPoints {
return false
}
}
}
for _, cs := range info.CipherSuites {
// As of Feb. 2017, Edge does not have 0xff, but Avast adds it
if cs == scsvRenegotiation {
return false
}
// Edge and modern IE do not have 0x4 or 0x5, but Blue Coat does
if cs == TLS_RSA_WITH_RC4_128_MD5 || cs == tls.TLS_RSA_WITH_RC4_128_SHA {
return false
}
}
if hasGreaseCiphers(info.CipherSuites) {
return false
}
return true
}
// looksLikeSafari returns true if info looks like a handshake
// from a modern version of MS Safari.
func (info rawHelloInfo) looksLikeSafari() bool {
// "One unique aspect of Secure Transport is that it includes
// the TLS_EMPTY_RENEGOTIATION_INFO_SCSV (0xff) cipher first,
// whereas the other libraries we investigated include the
// cipher last. Similar to Microsoft, Apple has changed
// TLS behavior in minor OS updates, which are not indicated
// in the HTTP User-Agent header. We allow for any of the
// updates when validating handshakes, and we check for the
// presence and ordering of ciphers, extensions, elliptic
// curves, and compression methods." (early 2016)
// Note that any C lib (e.g. curl) compiled on macOS
// will probably use Secure Transport which will also
// share the TLS handshake characteristics of Safari.
// We check for the presence and order of the extensions.
requiredExtensionsOrder := []uint16{10, 11, 13, 13172, 16, 5, 18, 23}
if !assertPresenceAndOrdering(requiredExtensionsOrder, info.Extensions, true) {
// Safari on iOS 11 (beta) uses different set/ordering of extensions
requiredExtensionsOrderiOS11 := []uint16{65281, 0, 23, 13, 5, 13172, 18, 16, 11, 10}
if !assertPresenceAndOrdering(requiredExtensionsOrderiOS11, info.Extensions, true) {
return false
}
} else {
// For these versions of Safari, expect TLS_EMPTY_RENEGOTIATION_INFO_SCSV first.
if len(info.CipherSuites) < 1 {
return false
}
if info.CipherSuites[0] != scsvRenegotiation {
return false
}
}
if hasGreaseCiphers(info.CipherSuites) {
return false
}
// We check for order and presence of cipher suites
expectedCipherSuiteOrder := []uint16{
tls.TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, // 0xc02c
tls.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, // 0xc02b
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384, // 0xc024
tls.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, // 0xc023
tls.TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, // 0xc00a
tls.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, // 0xc009
tls.TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, // 0xc030
tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, // 0xc02f
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384, // 0xc028
tls.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, // 0xc027
tls.TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, // 0xc014
tls.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, // 0xc013
tls.TLS_RSA_WITH_AES_256_GCM_SHA384, // 0x9d
tls.TLS_RSA_WITH_AES_128_GCM_SHA256, // 0x9c
TLS_RSA_WITH_AES_256_CBC_SHA256, // 0x3d
tls.TLS_RSA_WITH_AES_128_CBC_SHA256, // 0x3c
tls.TLS_RSA_WITH_AES_256_CBC_SHA, // 0x35
tls.TLS_RSA_WITH_AES_128_CBC_SHA, // 0x2f
}
return assertPresenceAndOrdering(expectedCipherSuiteOrder, info.CipherSuites, true)
}
// looksLikeTor returns true if the info looks like a ClientHello from Tor browser
// (based on Firefox).
func (info rawHelloInfo) looksLikeTor() bool {
requiredExtensionsOrder := []uint16{10, 11, 16, 5, 13}
if !assertPresenceAndOrdering(requiredExtensionsOrder, info.Extensions, true) {
return false
}
// check for session tickets support; Tor doesn't support them to prevent tracking
for _, ext := range info.Extensions {
if ext == 35 {
return false
}
}
// We check for both presence of curves and their ordering, including
// an optional curve at the beginning (for Tor based on Firefox 52)
infoCurves := info.Curves
if len(info.Curves) == 4 {
if info.Curves[0] != 29 {
return false
}
infoCurves = info.Curves[1:]
}
requiredCurves := []tls.CurveID{23, 24, 25}
if len(infoCurves) < len(requiredCurves) {
return false
}
for i := range requiredCurves {
if infoCurves[i] != requiredCurves[i] {
return false
}
}
if hasGreaseCiphers(info.CipherSuites) {
return false
}
// We check for order of cipher suites but not presence, since
// according to the paper, cipher suites may be not be added
// or reordered by the user, but they may be disabled.
expectedCipherSuiteOrder := []uint16{
TLS_AES_128_GCM_SHA256, // 0x1301
TLS_CHACHA20_POLY1305_SHA256, // 0x1303
TLS_AES_256_GCM_SHA384, // 0x1302
tls.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, // 0xc02b
tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, // 0xc02f
tls.TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305, // 0xcca9
tls.TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305, // 0xcca8
tls.TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, // 0xc02c
tls.TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, // 0xc030
tls.TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, // 0xc00a
tls.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, // 0xc009
tls.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, // 0xc013
tls.TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, // 0xc014
TLS_DHE_RSA_WITH_AES_128_CBC_SHA, // 0x33
TLS_DHE_RSA_WITH_AES_256_CBC_SHA, // 0x39
tls.TLS_RSA_WITH_AES_128_CBC_SHA, // 0x2f
tls.TLS_RSA_WITH_AES_256_CBC_SHA, // 0x35
tls.TLS_RSA_WITH_3DES_EDE_CBC_SHA, // 0xa
}
return assertPresenceAndOrdering(expectedCipherSuiteOrder, info.CipherSuites, false)
}
// assertPresenceAndOrdering will return true if candidateList contains
// the items in requiredItems in the same order as requiredItems.
//
// If requiredIsSubset is true, then all items in requiredItems must be
// present in candidateList. If requiredIsSubset is false, then requiredItems
// may contain items that are not in candidateList.
//
// In all cases, the order of requiredItems is enforced.
func assertPresenceAndOrdering(requiredItems, candidateList []uint16, requiredIsSubset bool) bool {
superset := requiredItems
subset := candidateList
if requiredIsSubset {
superset = candidateList
subset = requiredItems
}
var j int
for _, item := range subset {
var found bool
for j < len(superset) {
if superset[j] == item {
found = true
break
}
j++
}
if j == len(superset) && !found {
return false
}
}
return true
}
func hasGreaseCiphers(cipherSuites []uint16) bool {
for _, cipher := range cipherSuites {
if _, ok := greaseCiphers[cipher]; ok {
return true
}
}
return false
}
// pool buffers so we can reuse allocations over time
var bufpool = sync.Pool{
New: func() interface{} {
return new(bytes.Buffer)
},
}
var greaseCiphers = map[uint16]struct{}{
0x0A0A: {},
0x1A1A: {},
0x2A2A: {},
0x3A3A: {},
0x4A4A: {},
0x5A5A: {},
0x6A6A: {},
0x7A7A: {},
0x8A8A: {},
0x9A9A: {},
0xAAAA: {},
0xBABA: {},
0xCACA: {},
0xDADA: {},
0xEAEA: {},
0xFAFA: {},
}
2017-04-29 19:28:18 -05:00
// Define variables used for TLS communication
const (
extensionOCSPStatusRequest = 5
extensionSupportedCurves = 10 // also called "SupportedGroups"
extensionSupportedPoints = 11
extensionHeartbeat = 15
scsvRenegotiation = 0xff
// cipher suites missing from the crypto/tls package,
// in no particular order here
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 = 0xc024
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 = 0xc028
TLS_RSA_WITH_AES_256_CBC_SHA256 = 0x3d
TLS_DHE_RSA_WITH_AES_128_CBC_SHA = 0x33
TLS_DHE_RSA_WITH_AES_256_CBC_SHA = 0x39
TLS_RSA_WITH_RC4_128_MD5 = 0x4
// new PSK ciphers introduced by TLS 1.3, not (yet) in crypto/tls
// https://tlswg.github.io/tls13-spec/#rfc.appendix.A.4)
TLS_AES_128_GCM_SHA256 = 0x1301
TLS_AES_256_GCM_SHA384 = 0x1302
TLS_CHACHA20_POLY1305_SHA256 = 0x1303
TLS_AES_128_CCM_SHA256 = 0x1304
TLS_AES_128_CCM_8_SHA256 = 0x1305
)