0
Fork 0
mirror of https://github.com/caddyserver/caddy.git synced 2025-01-13 22:51:08 -05:00
caddy/vendor/github.com/aead/chacha20/chacha/macro.s

164 lines
5.3 KiB
ArmAsm
Raw Normal View History

// Copyright (c) 2018 Andreas Auernhammer. All rights reserved.
// Use of this source code is governed by a license that can be
// found in the LICENSE file.
// +build 386,!gccgo,!appengine,!nacl amd64,!gccgo,!appengine,!nacl
// ROTL_SSE rotates all 4 32 bit values of the XMM register v
// left by n bits using SSE2 instructions (0 <= n <= 32).
// The XMM register t is used as a temp. register.
#define ROTL_SSE(n, t, v) \
MOVO v, t; \
PSLLL $n, t; \
PSRLL $(32-n), v; \
PXOR t, v
// ROTL_AVX rotates all 4/8 32 bit values of the AVX/AVX2 register v
// left by n bits using AVX/AVX2 instructions (0 <= n <= 32).
// The AVX/AVX2 register t is used as a temp. register.
#define ROTL_AVX(n, t, v) \
VPSLLD $n, v, t; \
VPSRLD $(32-n), v, v; \
VPXOR v, t, v
// CHACHA_QROUND_SSE2 performs a ChaCha quarter-round using the
// 4 XMM registers v0, v1, v2 and v3. It uses only ROTL_SSE2 for
// rotations. The XMM register t is used as a temp. register.
#define CHACHA_QROUND_SSE2(v0, v1, v2, v3, t) \
PADDL v1, v0; \
PXOR v0, v3; \
ROTL_SSE(16, t, v3); \
PADDL v3, v2; \
PXOR v2, v1; \
ROTL_SSE(12, t, v1); \
PADDL v1, v0; \
PXOR v0, v3; \
ROTL_SSE(8, t, v3); \
PADDL v3, v2; \
PXOR v2, v1; \
ROTL_SSE(7, t, v1)
// CHACHA_QROUND_SSSE3 performs a ChaCha quarter-round using the
// 4 XMM registers v0, v1, v2 and v3. It uses PSHUFB for 8/16 bit
// rotations. The XMM register t is used as a temp. register.
//
// r16 holds the PSHUFB constant for a 16 bit left rotate.
// r8 holds the PSHUFB constant for a 8 bit left rotate.
#define CHACHA_QROUND_SSSE3(v0, v1, v2, v3, t, r16, r8) \
PADDL v1, v0; \
PXOR v0, v3; \
PSHUFB r16, v3; \
PADDL v3, v2; \
PXOR v2, v1; \
ROTL_SSE(12, t, v1); \
PADDL v1, v0; \
PXOR v0, v3; \
PSHUFB r8, v3; \
PADDL v3, v2; \
PXOR v2, v1; \
ROTL_SSE(7, t, v1)
// CHACHA_QROUND_AVX performs a ChaCha quarter-round using the
// 4 AVX/AVX2 registers v0, v1, v2 and v3. It uses VPSHUFB for 8/16 bit
// rotations. The AVX/AVX2 register t is used as a temp. register.
//
// r16 holds the VPSHUFB constant for a 16 bit left rotate.
// r8 holds the VPSHUFB constant for a 8 bit left rotate.
#define CHACHA_QROUND_AVX(v0, v1, v2, v3, t, r16, r8) \
VPADDD v0, v1, v0; \
VPXOR v3, v0, v3; \
VPSHUFB r16, v3, v3; \
VPADDD v2, v3, v2; \
VPXOR v1, v2, v1; \
ROTL_AVX(12, t, v1); \
VPADDD v0, v1, v0; \
VPXOR v3, v0, v3; \
VPSHUFB r8, v3, v3; \
VPADDD v2, v3, v2; \
VPXOR v1, v2, v1; \
ROTL_AVX(7, t, v1)
// CHACHA_SHUFFLE_SSE performs a ChaCha shuffle using the
// 3 XMM registers v1, v2 and v3. The inverse shuffle is
// performed by switching v1 and v3: CHACHA_SHUFFLE_SSE(v3, v2, v1).
#define CHACHA_SHUFFLE_SSE(v1, v2, v3) \
PSHUFL $0x39, v1, v1; \
PSHUFL $0x4E, v2, v2; \
PSHUFL $0x93, v3, v3
// CHACHA_SHUFFLE_AVX performs a ChaCha shuffle using the
// 3 AVX/AVX2 registers v1, v2 and v3. The inverse shuffle is
// performed by switching v1 and v3: CHACHA_SHUFFLE_AVX(v3, v2, v1).
#define CHACHA_SHUFFLE_AVX(v1, v2, v3) \
VPSHUFD $0x39, v1, v1; \
VPSHUFD $0x4E, v2, v2; \
VPSHUFD $0x93, v3, v3
// XOR_SSE extracts 4x16 byte vectors from src at
// off, xors all vectors with the corresponding XMM
// register (v0 - v3) and writes the result to dst
// at off.
// The XMM register t is used as a temp. register.
#define XOR_SSE(dst, src, off, v0, v1, v2, v3, t) \
MOVOU 0+off(src), t; \
PXOR v0, t; \
MOVOU t, 0+off(dst); \
MOVOU 16+off(src), t; \
PXOR v1, t; \
MOVOU t, 16+off(dst); \
MOVOU 32+off(src), t; \
PXOR v2, t; \
MOVOU t, 32+off(dst); \
MOVOU 48+off(src), t; \
PXOR v3, t; \
MOVOU t, 48+off(dst)
// XOR_AVX extracts 4x16 byte vectors from src at
// off, xors all vectors with the corresponding AVX
// register (v0 - v3) and writes the result to dst
// at off.
// The XMM register t is used as a temp. register.
#define XOR_AVX(dst, src, off, v0, v1, v2, v3, t) \
VPXOR 0+off(src), v0, t; \
VMOVDQU t, 0+off(dst); \
VPXOR 16+off(src), v1, t; \
VMOVDQU t, 16+off(dst); \
VPXOR 32+off(src), v2, t; \
VMOVDQU t, 32+off(dst); \
VPXOR 48+off(src), v3, t; \
VMOVDQU t, 48+off(dst)
#define XOR_AVX2(dst, src, off, v0, v1, v2, v3, t0, t1) \
VMOVDQU (0+off)(src), t0; \
VPERM2I128 $32, v1, v0, t1; \
VPXOR t0, t1, t0; \
VMOVDQU t0, (0+off)(dst); \
VMOVDQU (32+off)(src), t0; \
VPERM2I128 $32, v3, v2, t1; \
VPXOR t0, t1, t0; \
VMOVDQU t0, (32+off)(dst); \
VMOVDQU (64+off)(src), t0; \
VPERM2I128 $49, v1, v0, t1; \
VPXOR t0, t1, t0; \
VMOVDQU t0, (64+off)(dst); \
VMOVDQU (96+off)(src), t0; \
VPERM2I128 $49, v3, v2, t1; \
VPXOR t0, t1, t0; \
VMOVDQU t0, (96+off)(dst)
#define XOR_UPPER_AVX2(dst, src, off, v0, v1, v2, v3, t0, t1) \
VMOVDQU (0+off)(src), t0; \
VPERM2I128 $32, v1, v0, t1; \
VPXOR t0, t1, t0; \
VMOVDQU t0, (0+off)(dst); \
VMOVDQU (32+off)(src), t0; \
VPERM2I128 $32, v3, v2, t1; \
VPXOR t0, t1, t0; \
VMOVDQU t0, (32+off)(dst); \
#define EXTRACT_LOWER(dst, v0, v1, v2, v3, t0) \
VPERM2I128 $49, v1, v0, t0; \
VMOVDQU t0, 0(dst); \
VPERM2I128 $49, v3, v2, t0; \
VMOVDQU t0, 32(dst)